数据结构——算法的时间复杂度和空间复杂度-程序员宅基地

技术标签: 算法  数据结构  

目录

前言

一、数据结构和算法

1.1 算法的效率

1.2 算法的复杂度

二、时间复杂度

2.1 时间复杂度的概念

2.2 大O的渐进表示法

2.3常见时间复杂度计算举例

三、空间复杂度

四、常见复杂度对比

总结


前言

今天我们来学习一下数据结构和算法的时间和空间复杂度,了解如何来评价一个算法的好坏。


一、数据结构和算法

  数据结构 (Data Structure) 是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合,是在内存中用来管理数据的结构。
   算法 就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为
输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。
   算法定义了如何在数据结构上执行操作。算法的选择和设计必须考虑到所使用的数据结构,因为同一种算法可能依赖于不同的数据结构来实现,从而影响其效率和实用性

1.1 算法的效率

我们如何来衡量一个算法的好坏呢
我们来看下面的代码:
long long Fib(int N)
{
   if(N < 3)
     return 1;
 
  return Fib(N-1) + Fib(N-2);
}
斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?
我们通过算法的复杂度来衡量算法的效率。
 

1.2 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即 时间复杂度 空间复杂度
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

二、时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数(这里函数指数学意义上的函数),它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法 的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
    int count = 0;
    for (int i = 0; i < N ; ++ i)
    {
     for (int j = 0; j < N ; ++ j)
     {
     ++count;
     }
    }
 
    for (int k = 0; k < 2 * N ; ++ k)
    {
     ++count;
    }
    int M = 10;
    while (M--)
    {
     ++count;
    }
printf("%d\n", count);
}
Func1 执行的基本操作次数 :
N = 10 F(N) = 130
N = 100 F(N) = 10210                         F(N)=N^{2}+N*2+10
N = 1000 F(N) = 1002010
                ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用 常数1 取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中, 只保留最高阶项
3、如果最高阶项存在且不是1,则去除与这个项目 相乘的常数 。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

2.3常见时间复杂度计算举例

实例1:
// 计算Func2的时间复杂度?
void Func2(int N)
{
    int count = 0;
    for (int k = 0; k < 2 * N ; ++ k)
     {
         ++count;
     }
     int M = 10;
     while (M--)
     {
         ++count;
     }
 printf("%d\n", count);
}

其中for循环次数2N,while循环常数次,所以时间复杂度为2N+10,用大O的渐进表示法为O(N)。

实例2:
// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
     int count = 0;
     for (int k = 0; k < M; ++ k)
     {
         ++count;
     }
     for (int k = 0; k < N ; ++ k)
     {
         ++count;
     }
 printf("%d\n", count);
}

两个for循环次数分别为M,和N,执行了M+N次,时间复杂度为O(M+N)。

实例3:
// 计算Func4的时间复杂度?
void Func4(int N)
{
     int count = 0;
     for (int k = 0; k < 100; ++ k)
     {
         ++count;
     }
 printf("%d\n", count);
}

其中for循环执行次数为常数次,所以时间复杂度为O(1)。

实例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

该函数为查询字符串中有无字符,遍历字符串,最好1次,最坏N次。所以时间复杂度为O(N)。

实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
     assert(a);
     for (size_t end = n; end > 0; --end)
     {
         int exchange = 0;
         for (size_t i = 1; i < end; ++i)
         {
             if (a[i-1] > a[i])
             {
                 Swap(&a[i-1], &a[i]);
                 exchange = 1;
             }
         }
     if (exchange == 0)
         break;
     }
}

以上为一个冒泡排序,基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)

实例6:
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
     assert(a);
     int begin = 0;
     int end = n-1;
 // [begin, end]:begin和end是左闭右闭区间,因此有=号
     while (begin <= end)
     {
         int mid = begin + ((end-begin)>>1);
         if (a[mid] < x)
             begin = mid+1;
         else if (a[mid] > x)
             end = mid-1;
         else
             return mid;
     }
     return -1;
}

以上为二分查找,基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。(建议通过折纸查找的方式讲解logN是怎么计算出来的)

实例7:
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
     if(0 == N)
     return 1;
 
 return Fac(N-1)*N;
}

每次调用Fac的时间复杂度为O(1),调用N次,时间复杂度为O(N)。

实例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
     if(N < 3)
     return 1;
 
 return Fib(N-1) + Fib(N-2);
}

调用次数为一个等比数列递增,为递归了2^N次,时间复杂度为O(2^N)。

三、空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因 此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
实例1:
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{ 
    assert(a);
     for (size_t end = n; end > 0; --end)
     {
         int exchange = 0;
         for (size_t i = 1; i < end; ++i)
         {    
             if (a[i-1] > a[i])
             {
                 Swap(&a[i-1], &a[i]);
                 exchange = 1;
             }
         }
     if (exchange == 0)
         break;
     }
}
使用了常数个额外空间,所以空间复杂度为 O(1)
实例2:
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
     if(n==0)
         return NULL;
 
     long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
     fibArray[0] = 0;
     fibArray[1] = 1;
     for (int i = 2; i <= n ; ++i)
     {
         fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
     }
 return fibArray;
}
动态开辟了N个空间,空间复杂度为 O(N)
因为每次左边的i-1调用完,右边的i-2的空间与前面一样,因为前面用完就回收了,后面的空间还是前一个,是重复利用的。所以只开辟了N个空间。
总结:空间是可以重复利用的,时间是累加的,一去不返回。
实例3:
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
     if(N == 0)
     return 1;
 
 return Fac(N-1)*N;
}
递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

四、常见复杂度对比

一般算法常见的复杂度如下:

总结

上述文章,我们讲了算法的效率分析,即时间复杂度和空间复杂度,希望对你有所以帮助。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/2301_76613753/article/details/137747627

智能推荐

分布式光纤传感器的全球与中国市场2022-2028年:技术、参与者、趋势、市场规模及占有率研究报告_预计2026年中国分布式传感器市场规模有多大-程序员宅基地

文章浏览阅读3.2k次。本文研究全球与中国市场分布式光纤传感器的发展现状及未来发展趋势,分别从生产和消费的角度分析分布式光纤传感器的主要生产地区、主要消费地区以及主要的生产商。重点分析全球与中国市场的主要厂商产品特点、产品规格、不同规格产品的价格、产量、产值及全球和中国市场主要生产商的市场份额。主要生产商包括:FISO TechnologiesBrugg KabelSensor HighwayOmnisensAFL GlobalQinetiQ GroupLockheed MartinOSENSA Innovati_预计2026年中国分布式传感器市场规模有多大

07_08 常用组合逻辑电路结构——为IC设计的延时估计铺垫_基4布斯算法代码-程序员宅基地

文章浏览阅读1.1k次,点赞2次,收藏12次。常用组合逻辑电路结构——为IC设计的延时估计铺垫学习目的:估计模块间的delay,确保写的代码的timing 综合能给到多少HZ,以满足需求!_基4布斯算法代码

OpenAI Manager助手(基于SpringBoot和Vue)_chatgpt网页版-程序员宅基地

文章浏览阅读3.3k次,点赞3次,收藏5次。OpenAI Manager助手(基于SpringBoot和Vue)_chatgpt网页版

关于美国计算机奥赛USACO,你想知道的都在这_usaco可以多次提交吗-程序员宅基地

文章浏览阅读2.2k次。USACO自1992年举办,到目前为止已经举办了27届,目的是为了帮助美国信息学国家队选拔IOI的队员,目前逐渐发展为全球热门的线上赛事,成为美国大学申请条件下,含金量相当高的官方竞赛。USACO的比赛成绩可以助力计算机专业留学,越来越多的学生进入了康奈尔,麻省理工,普林斯顿,哈佛和耶鲁等大学,这些同学的共同点是他们都参加了美国计算机科学竞赛(USACO),并且取得过非常好的成绩。适合参赛人群USACO适合国内在读学生有意向申请美国大学的或者想锻炼自己编程能力的同学,高三学生也可以参加12月的第_usaco可以多次提交吗

MySQL存储过程和自定义函数_mysql自定义函数和存储过程-程序员宅基地

文章浏览阅读394次。1.1 存储程序1.2 创建存储过程1.3 创建自定义函数1.3.1 示例1.4 自定义函数和存储过程的区别1.5 变量的使用1.6 定义条件和处理程序1.6.1 定义条件1.6.1.1 示例1.6.2 定义处理程序1.6.2.1 示例1.7 光标的使用1.7.1 声明光标1.7.2 打开光标1.7.3 使用光标1.7.4 关闭光标1.8 流程控制的使用1.8.1 IF语句1.8.2 CASE语句1.8.3 LOOP语句1.8.4 LEAVE语句1.8.5 ITERATE语句1.8.6 REPEAT语句。_mysql自定义函数和存储过程

半导体基础知识与PN结_本征半导体电流为0-程序员宅基地

文章浏览阅读188次。半导体二极管——集成电路最小组成单元。_本征半导体电流为0

随便推点

【Unity3d Shader】水面和岩浆效果_unity 岩浆shader-程序员宅基地

文章浏览阅读2.8k次,点赞3次,收藏18次。游戏水面特效实现方式太多。咱们这边介绍的是一最简单的UV动画(无顶点位移),整个mesh由4个顶点构成。实现了水面效果(左图),不动代码稍微修改下参数和贴图可以实现岩浆效果(右图)。有要思路是1,uv按时间去做正弦波移动2,在1的基础上加个凹凸图混合uv3,在1、2的基础上加个水流方向4,加上对雾效的支持,如没必要请自行删除雾效代码(把包含fog的几行代码删除)S..._unity 岩浆shader

广义线性模型——Logistic回归模型(1)_广义线性回归模型-程序员宅基地

文章浏览阅读5k次。广义线性模型是线性模型的扩展,它通过连接函数建立响应变量的数学期望值与线性组合的预测变量之间的关系。广义线性模型拟合的形式为:其中g(μY)是条件均值的函数(称为连接函数)。另外,你可放松Y为正态分布的假设,改为Y 服从指数分布族中的一种分布即可。设定好连接函数和概率分布后,便可以通过最大似然估计的多次迭代推导出各参数值。在大部分情况下,线性模型就可以通过一系列连续型或类别型预测变量来预测正态分布的响应变量的工作。但是,有时候我们要进行非正态因变量的分析,例如:(1)类别型.._广义线性回归模型

HTML+CSS大作业 环境网页设计与实现(垃圾分类) web前端开发技术 web课程设计 网页规划与设计_垃圾分类网页设计目标怎么写-程序员宅基地

文章浏览阅读69次。环境保护、 保护地球、 校园环保、垃圾分类、绿色家园、等网站的设计与制作。 总结了一些学生网页制作的经验:一般的网页需要融入以下知识点:div+css布局、浮动、定位、高级css、表格、表单及验证、js轮播图、音频 视频 Flash的应用、ul li、下拉导航栏、鼠标划过效果等知识点,网页的风格主题也很全面:如爱好、风景、校园、美食、动漫、游戏、咖啡、音乐、家乡、电影、名人、商城以及个人主页等主题,学生、新手可参考下方页面的布局和设计和HTML源码(有用点赞△) 一套A+的网_垃圾分类网页设计目标怎么写

C# .Net 发布后,把dll全部放在一个文件夹中,让软件目录更整洁_.net dll 全局目录-程序员宅基地

文章浏览阅读614次,点赞7次,收藏11次。之前找到一个修改 exe 中 DLL地址 的方法, 不太好使,虽然能正确启动, 但无法改变 exe 的工作目录,这就影响了.Net 中很多获取 exe 执行目录来拼接的地址 ( 相对路径 ),比如 wwwroot 和 代码中相对目录还有一些复制到目录的普通文件 等等,它们的地址都会指向原来 exe 的目录, 而不是自定义的 “lib” 目录,根本原因就是没有修改 exe 的工作目录这次来搞一个启动程序,把 .net 的所有东西都放在一个文件夹,在文件夹同级的目录制作一个 exe._.net dll 全局目录

BRIEF特征点描述算法_breif description calculation 特征点-程序员宅基地

文章浏览阅读1.5k次。本文为转载,原博客地址:http://blog.csdn.net/hujingshuang/article/details/46910259简介 BRIEF是2010年的一篇名为《BRIEF:Binary Robust Independent Elementary Features》的文章中提出,BRIEF是对已检测到的特征点进行描述,它是一种二进制编码的描述子,摈弃了利用区域灰度..._breif description calculation 特征点

房屋租赁管理系统的设计和实现,SpringBoot计算机毕业设计论文_基于spring boot的房屋租赁系统论文-程序员宅基地

文章浏览阅读4.1k次,点赞21次,收藏79次。本文是《基于SpringBoot的房屋租赁管理系统》的配套原创说明文档,可以给应届毕业生提供格式撰写参考,也可以给开发类似系统的朋友们提供功能业务设计思路。_基于spring boot的房屋租赁系统论文