计算文本相似度-Word2Vec计算_java word2vec 语义相似度-程序员宅基地

技术标签: 自然语言处理基础  自然语言处理  

来源于https://juejin.im/post/5b237b45f265da59a90c11d6
Word2Vec,顾名思义,其实就是将每一个词转换为向量的过程。
如果不了解的话可以参考:https://blog.csdn.net/itplus/article/details/37969519
这里我们可以直接下载训练好的 Word2Vec 模型,
模型的链接地址为:https://pan.baidu.com/s/1TZ8GII0CEX32ydjsfMc0zw
是使用新闻、百度百科、小说数据来训练的 64 维的 Word2Vec 模型,数据量很大,整体效果还不错,我们可以直接下载下来使用,这里我们使用的是 news_12g_baidubaike_20g_novel_90g_embedding_64.bin 数据,然后实现 Sentence2Vec,代码如下:

import gensim
import jieba
import numpy as np
from scipy.linalg import norm

model_file = './word2vec/news_12g_baidubaike_20g_novel_90g_embedding_64.bin'
model = gensim.models.KeyedVectors.load_word2vec_format(model_file, binary=True)

def vector_similarity(s1, s2):
    def sentence_vector(s):
        words = jieba.lcut(s)
        v = np.zeros(64)
        for word in words:
            v += model[word]
        v /= len(words)
        return v

    v1, v2 = sentence_vector(s1), sentence_vector(s2)
    return np.dot(v1, v2) / (norm(v1) * norm(v2))

在获取 Sentence Vector 的时候,我们首先对句子进行分词,然后对分好的每一个词获取其对应的 Vector,然后将所有 Vector 相加并求平均,这样就可得到 Sentence Vector 了,然后再计算其夹角余弦值即可。

调用示例如下:

s1 = '你在干嘛'
s2 = '你正做什么'
vector_similarity(s1, s2)

结果如下:

0.6701133967824016

这时如果我们再回到最初的例子看下效果:

strings = [
    '你在干什么',
    '你在干啥子',
    '你在做什么',
    '你好啊',
    '我喜欢吃香蕉'
]

target = '你在干啥'

for string in strings:
    print(string, vector_similarity(string, target))

依然是前面的例子,我们看下它们的匹配度结果是多少,运行结果如下:

你在干什么 0.8785495016487204
你在干啥子 0.9789649689827049
你在做什么 0.8781992402695274
你好啊 0.5174225914249863
我喜欢吃香蕉 0.582990841450621

可以看到相近的语句相似度都能到 0.8 以上,而不同的句子相似度都不足 0.6,这个区分度就非常大了,可以说有了 Word2Vec 我们可以结合一些语义信息来进行一些判断,效果明显也好很多。所以总体来说,Word2Vec 计算的方式是非常好的。另外学术界还有一些可能更好的研究成果,这个可以参考知乎上的一些回答:
https://www.zhihu.com/question/29978268/answer/54399062
。以上便是进行句子相似度计算的基本方法和 Python 实现,
本节代码地址:
https://github.com/AIDeepLearning/SentenceDistance

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Eric_LH/article/details/83151481

智能推荐

while循环&CPU占用率高问题深入分析与解决方案_main函数使用while(1)循环cpu占用99-程序员宅基地

文章浏览阅读3.8k次,点赞9次,收藏28次。直接上一个工作中碰到的问题,另外一个系统开启多线程调用我这边的接口,然后我这边会开启多线程批量查询第三方接口并且返回给调用方。使用的是两三年前别人遗留下来的方法,放到线上后发现确实是可以正常取到结果,但是一旦调用,CPU占用就直接100%(部署环境是win server服务器)。因此查看了下相关的老代码并使用JProfiler查看发现是在某个while循环的时候有问题。具体项目代码就不贴了,类似于下面这段代码。​​​​​​while(flag) {//your code;}这里的flag._main函数使用while(1)循环cpu占用99

【无标题】jetbrains idea shift f6不生效_idea shift +f6快捷键不生效-程序员宅基地

文章浏览阅读347次。idea shift f6 快捷键无效_idea shift +f6快捷键不生效

node.js学习笔记之Node中的核心模块_node模块中有很多核心模块,以下不属于核心模块,使用时需下载的是-程序员宅基地

文章浏览阅读135次。Ecmacript 中没有DOM 和 BOM核心模块Node为JavaScript提供了很多服务器级别,这些API绝大多数都被包装到了一个具名和核心模块中了,例如文件操作的 fs 核心模块 ,http服务构建的http 模块 path 路径操作模块 os 操作系统信息模块// 用来获取机器信息的var os = require('os')// 用来操作路径的var path = require('path')// 获取当前机器的 CPU 信息console.log(os.cpus._node模块中有很多核心模块,以下不属于核心模块,使用时需下载的是

数学建模【SPSS 下载-安装、方差分析与回归分析的SPSS实现(软件概述、方差分析、回归分析)】_化工数学模型数据回归软件-程序员宅基地

文章浏览阅读10w+次,点赞435次,收藏3.4k次。SPSS 22 下载安装过程7.6 方差分析与回归分析的SPSS实现7.6.1 SPSS软件概述1 SPSS版本与安装2 SPSS界面3 SPSS特点4 SPSS数据7.6.2 SPSS与方差分析1 单因素方差分析2 双因素方差分析7.6.3 SPSS与回归分析SPSS回归分析过程牙膏价格问题的回归分析_化工数学模型数据回归软件

利用hutool实现邮件发送功能_hutool发送邮件-程序员宅基地

文章浏览阅读7.5k次。如何利用hutool工具包实现邮件发送功能呢?1、首先引入hutool依赖<dependency> <groupId>cn.hutool</groupId> <artifactId>hutool-all</artifactId> <version>5.7.19</version></dependency>2、编写邮件发送工具类package com.pc.c..._hutool发送邮件

docker安装elasticsearch,elasticsearch-head,kibana,ik分词器_docker安装kibana连接elasticsearch并且elasticsearch有密码-程序员宅基地

文章浏览阅读867次,点赞2次,收藏2次。docker安装elasticsearch,elasticsearch-head,kibana,ik分词器安装方式基本有两种,一种是pull的方式,一种是Dockerfile的方式,由于pull的方式pull下来后还需配置许多东西且不便于复用,个人比较喜欢使用Dockerfile的方式所有docker支持的镜像基本都在https://hub.docker.com/docker的官网上能找到合..._docker安装kibana连接elasticsearch并且elasticsearch有密码

随便推点

Python 攻克移动开发失败!_beeware-程序员宅基地

文章浏览阅读1.3w次,点赞57次,收藏92次。整理 | 郑丽媛出品 | CSDN(ID:CSDNnews)近年来,随着机器学习的兴起,有一门编程语言逐渐变得火热——Python。得益于其针对机器学习提供了大量开源框架和第三方模块,内置..._beeware

Swift4.0_Timer 的基本使用_swift timer 暂停-程序员宅基地

文章浏览阅读7.9k次。//// ViewController.swift// Day_10_Timer//// Created by dongqiangfei on 2018/10/15.// Copyright 2018年 飞飞. All rights reserved.//import UIKitclass ViewController: UIViewController { ..._swift timer 暂停

元素三大等待-程序员宅基地

文章浏览阅读986次,点赞2次,收藏2次。1.硬性等待让当前线程暂停执行,应用场景:代码执行速度太快了,但是UI元素没有立马加载出来,造成两者不同步,这时候就可以让代码等待一下,再去执行找元素的动作线程休眠,强制等待 Thread.sleep(long mills)package com.example.demo;import org.junit.jupiter.api.Test;import org.openqa.selenium.By;import org.openqa.selenium.firefox.Firefox.._元素三大等待

Java软件工程师职位分析_java岗位分析-程序员宅基地

文章浏览阅读3k次,点赞4次,收藏14次。Java软件工程师职位分析_java岗位分析

Java:Unreachable code的解决方法_java unreachable code-程序员宅基地

文章浏览阅读2k次。Java:Unreachable code的解决方法_java unreachable code

标签data-*自定义属性值和根据data属性值查找对应标签_如何根据data-*属性获取对应的标签对象-程序员宅基地

文章浏览阅读1w次。1、html中设置标签data-*的值 标题 11111 222222、点击获取当前标签的data-url的值$('dd').on('click', function() { var urlVal = $(this).data('ur_如何根据data-*属性获取对应的标签对象

推荐文章

热门文章

相关标签