Unity记录-UGUI的屏幕自适应原理和应用_ugui自适应-程序员宅基地

技术标签: Unity  Unity记录  Ugui  

好久没更新博客了,自从入了游戏的坑,都还在学习阶段,平时都是记录在自己的笔记上,决定抽空都转换成博客,都是一些基础加上自己工作中遇到的情况,分享出来,给想入门的人一些参考吧。

UGUI的屏幕自适应,是通过Canvas Scaler来做的,根据屏幕的分辨率,计算出canvas的大小,同时计算ScaleXY,通过Size + Scale来控制Canvas的变换,UI作为canvas的子物体,也会跟随着一起变化;为了保证UI的位置,需要在设计UI的时候,对角落,边缘的UI做特殊的处理,利用锚点来保证UI与边缘或角落的距离,锚点的概念就不多说了,一句话:锚点的向量值就是锚点与自己轴心的距离。根据ugui提供的几种默认的锚点位置,就能满足基本的需求,然后改变分辨率,再验证一下UI的位置是否正确。

Canvas Scaler

首先要明确几个概念:

  1. Reference Resolution : 参考的屏幕大小,选择主流的分辨率,在这个分辨率下设计UI。
  2. Screen Size : 当前的屏幕大小
  3. Canvas Size : Canvas RectTransform的宽高
  4. Scale Factor: 用于计算ScaleXy,缩放Canvas,来适应屏幕。 ScaleFactor = ScreenSize / Canvas Size;只有当canvas的renderMode为screen Space时才有效。
  5. Canvas.Rectransform.ScaleXYZ , canvas的缩放比例
    在ScreenSpace->overlay模式下,ScaleXYZ = scaleFactor
    在ScreenSpace->Camera模式下,ScaleXYZ = scaleFactor * scaleFactorCamera(只是说明camera的影响因子)
UI Scale Mode是三种模式
Constant Pixel Size

通过Scale Factor直接缩放所有的UI元素,按照scaleFactor = Screensize/ canvasSize的规则变化。
当scaleFactor= 1时,canvasSize和screenSize是相等的。

接下来是参数:Reference pixels Per Unit,每单位的像素数,用来决定UI在世界坐标中的大小。
其实还有另外一个pixel per unit,它是Sprite的属性,这两个有什么关系呢?
PixelPerUnit = spritePixelperUnit / reference pixels per unit
这个两个共同作用,计算出真实的PixelPerUnit
UI的大小 = 原图的width / PixerlperUnit * 原图的height / PixelPerUnit
要在Unity中看到UI的真实大小,需要点击image的set Native Size。

Scale with Screen Size

根据屏幕尺寸来调整UI的缩放值,具体项目中使用哪种模式,根据自己而定,一般选择match width or Height 或者Expand。不过一般推荐使用expand,它可以完整的显示UI,不会出现裁剪的问题。

Screen Match Mode 的三种模式:

  • Match Width or Height
    根据宽度或高度来适应canvas size
    具体根据Match的值,
  1. Match = 0, 根据宽度进行缩放,只有屏幕的宽度变换对UI有影响。
    此时,CanvasSize.width = Reference resolution. x
    scale Factor = ScreenSize.width / CanvasSize.width
    CanvasSize.height = ScreenSize.height / Scalefactor
    计算出CanvasSize的高度。

  2. Match=1 , 根据高度进行缩放,
    CanvasSize.Height = ReferenceResolution.y
    ScaleFactor = ScreenSize.height / CanvasSize.height;
    CanvasSize.width = ScreenSize.Width / ScaleFactor ;

  3. Match = (0, 1) 根据两者的权重来加成。

如果是横版游戏,以高度缩放,竖版游戏按宽度缩放。
下面是UGUI的源码,可以看到还是比较清楚的,对数变换可以忽略

case ScreenMatchMode.MatchWidthOrHeight:
 {
      float logWidth = Mathf.Log(screenSize.x / m_ReferenceResolution.x, kLogBase);
      float logHeight = Mathf.Log(screenSize.y / m_ReferenceResolution.y, kLogBase);
      float logWeightedAverage = Mathf.Lerp(logWidth, logHeight, m_MatchWidthOrHeight);
      scaleFactor = Mathf.Pow(kLogBase, logWeightedAverage);
  }
  • Expand
    将Canvas Size进行宽或高扩大,让他高于Reference Resolution(参考分辨率)。
    计算方式:
    scaleFactor = Mathf.Min(screenSize.x / referenceresolution.x, screenSize.y / referenceresolution.y);
    当reference Resolution = 1280 * 720 ,Screen Size = 800 * 600
    Scale Factor Width = 800/1280 = 0.625;
    Scale Factor Height = 600 / 720 = 0.8333
    取较小的值Scale Factor = 0.625
    根据ScaleFactor = ScreenSize / CanvasSize
    Canvas Size Width = 800 / 0.625 = 1280;
    Canvas Size height = 600 / 0.625 = 960;
    Canvas Size= 1280 * 960
    高度从720变成960, 最大程度的放大。缩放不剪切;适合制作较小的标准尺寸,扩充到较大屏幕上。保证UI中的元素都在屏幕内部,可能会出现侧边空白。

在这里插入图片描述

  • Shrink
    将Canvas Size进行宽或高的收缩,让他低于Reference Resolution
    ScaleFactor = Mathf.Max((screenSize.x / referenceresolution.x, screenSize.y / referenceresolution.y)
    同样的计算,
    Canvas Size从1280 * 720 收缩为960 * 720 ,最大程度的缩小;缩放且剪切
    保证屏幕侧边不会出现空白,可能会将UI裁剪掉。

  • 计算ScaleXY
    上面已经谈论过了,在screen space 下,当改变尺寸时,canvas size 会发生变化,变化的规则也在上面进行了说明,但是同时我们也注意到canvas的Scale也是发生了变化。
    下面我们来讨论在Screen Space-camera下,canvas是怎么做适配的
    使用了camera来渲染UI,canvas此时是处于世界空间中,现在要做的就是把canvas和投影空间的投影平面重叠,为了满足这个目的,canvas会进行缩放和变换来适应。
    一直满足等式:canvas.height * ScaleXY = 投影面height
    1.正交相机
    参数Size ,定义了投影平面的高的1/2,
    Canvas.height * Scale = camera.size * 2
    Canvas.height可以根据上面讨论过的规则计算出,然后scale = camera.size * 2 / cavas.height ;

2.透视相机
参数是Fov,同时要考虑canvas.planedistance;
canvas.height * Scale = 2 * canvas.planeDistance * tan(camera.fov/2)
举例:
当reference Resolution = 1280 * 720 ,Screen Size = 800 * 600
正交相机: Size = 360
上面已经计算过了,Canvas.heigt = 960
则Scale = 360 * 2 / canvas.height = 0.75
在这里插入图片描述

在canvasSize 和scaleXyz的共同作用下,canvas才能一直和投影空间重叠。为了适配平面大小,canvassize进行变换,同时又为了与投影空间重叠,scaleXYZ跟随着变换。

Constant Physical Size

通过硬件设备的DPi(Dots per Inch 每英寸点数)进行缩放。不管屏幕的size如何变化,都会保持UI的大小不变

计算屏幕变换时,UI的缩放系数计算

UI的适配,只要设置好UI控件的锚点位置,ugui会自动为我们做适配,但是如果我们要知道具体UI的缩放系数,还需要结合上面讨论的canvas缩放的规则来进行计算。

项目中使用的是expand模式
float referenceAspect = referencesolution.x / referencesolution.y
float ScreenAspect = Screen.Width / Screen.Height

如果ScreenAspect > referenceAspect 时,
Screen.Width / Screen.Height > reference.x / reference.y
做一个简单的变换:
Screen.Width / reference.x > Screen.Height/ reference.y
可以回到上面看一下,scalefactor的计算方法,取的是w和h中缩放小的那个,这个时候,取的是Height的缩放。
所以canvas 在缩放的时候,height是不变的,对canvassize的Width进行扩大,
canvassize.x= Screen.w * referenc.y / Screen.h
标准的canvas的宽度是是reference.x
所以canvas当前的W的缩放因子是 , canvassize.x / referenc.x =
Screen.w / reference.x * reference.y / Screen.h = ScreenAspect / referenceAspect
所以H的缩放因子是1, W的缩放因子是ScreenAspect / referencsAspect。

同理,如果refereneAspect > ScreenAspect
则,Screen.h / reference.x > Screen.W / reference.y
所以canvas的规则就是,W不变, H缩放
W的缩放因子是1
H的缩放因子是referenceaspect / ScreenAspect
用代码表示:

float  ScreenAspect = Screen.width / Screen.height;
float referenceAspect = reference.x / reference.y ;
float Wscale ;W方向的缩放
float Hscale;
float FullScale;全屏的缩放
if(ScreenAspect > referenceAspect)
{
    Hscale = 1.0f;
    Wscale = ScreenAspect / referenceAspect;
    FullScale = Wscale;
}
else if(ScreenAspect < referenceAspect)
{
    Wscale = 1.0f;
    Hscale = referenceAspect / ScreenAspect;
    FullScale = Hscale ;
}
else 
{
    Wscale = 1.0f;
    Hscale = 1.0f
    FullScale = 1.0f ;
}

UI上3D物体相关的适配

如果UI上用到了3D模型,而且是用单独的3D相机去渲染的。而且模型在UI的上面,如果屏幕尺寸发生变换,模型不会变化,UI可能会缩小,模型会挡住原来旁边的UI,所以需要对3D物体根据屏幕尺寸进行缩放,问题是这个缩放比例的计算。
可以利用上面计算的UI缩放系数,来缩放相机的参数
如果是透视相机,缩放fov
如果是正交相机,缩放size
达到3D模型适配UI的效果,正交相机是亲测有效

所以如果有这种3D模型叠在UI上的需求,最好还是用RenderTexture来做,不需要考虑这种适配的问题。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/shitangdejiaozi/article/details/88964850

智能推荐

hive使用适用场景_大数据入门:Hive应用场景-程序员宅基地

文章浏览阅读5.8k次。在大数据的发展当中,大数据技术生态的组件,也在不断地拓展开来,而其中的Hive组件,作为Hadoop的数据仓库工具,可以实现对Hadoop集群当中的大规模数据进行相应的数据处理。今天我们的大数据入门分享,就主要来讲讲,Hive应用场景。关于Hive,首先需要明确的一点就是,Hive并非数据库,Hive所提供的数据存储、查询和分析功能,本质上来说,并非传统数据库所提供的存储、查询、分析功能。Hive..._hive应用场景

zblog采集-织梦全自动采集插件-织梦免费采集插件_zblog 网页采集插件-程序员宅基地

文章浏览阅读496次。Zblog是由Zblog开发团队开发的一款小巧而强大的基于Asp和PHP平台的开源程序,但是插件市场上的Zblog采集插件,没有一款能打的,要么就是没有SEO文章内容处理,要么就是功能单一。很少有适合SEO站长的Zblog采集。人们都知道Zblog采集接口都是对Zblog采集不熟悉的人做的,很多人采取模拟登陆的方法进行发布文章,也有很多人直接操作数据库发布文章,然而这些都或多或少的产生各种问题,发布速度慢、文章内容未经严格过滤,导致安全性问题、不能发Tag、不能自动创建分类等。但是使用Zblog采._zblog 网页采集插件

Flink学习四:提交Flink运行job_flink定时运行job-程序员宅基地

文章浏览阅读2.4k次,点赞2次,收藏2次。restUI页面提交1.1 添加上传jar包1.2 提交任务job1.3 查看提交的任务2. 命令行提交./flink-1.9.3/bin/flink run -c com.qu.wc.StreamWordCount -p 2 FlinkTutorial-1.0-SNAPSHOT.jar3. 命令行查看正在运行的job./flink-1.9.3/bin/flink list4. 命令行查看所有job./flink-1.9.3/bin/flink list --all._flink定时运行job

STM32-LED闪烁项目总结_嵌入式stm32闪烁led实验总结-程序员宅基地

文章浏览阅读1k次,点赞2次,收藏6次。这个项目是基于STM32的LED闪烁项目,主要目的是让学习者熟悉STM32的基本操作和编程方法。在这个项目中,我们将使用STM32作为控制器,通过对GPIO口的控制实现LED灯的闪烁。这个STM32 LED闪烁的项目是一个非常简单的入门项目,但它可以帮助学习者熟悉STM32的编程方法和GPIO口的使用。在这个项目中,我们通过对GPIO口的控制实现了LED灯的闪烁。LED闪烁是STM32入门课程的基础操作之一,它旨在教学生如何使用STM32开发板控制LED灯的闪烁。_嵌入式stm32闪烁led实验总结

Debezium安装部署和将服务托管到systemctl-程序员宅基地

文章浏览阅读63次。本文介绍了安装和部署Debezium的详细步骤,并演示了如何将Debezium服务托管到systemctl以进行方便的管理。本文将详细介绍如何安装和部署Debezium,并将其服务托管到systemctl。解压缩后,将得到一个名为"debezium"的目录,其中包含Debezium的二进制文件和其他必要的资源。注意替换"ExecStart"中的"/path/to/debezium"为实际的Debezium目录路径。接下来,需要下载Debezium的压缩包,并将其解压到所需的目录。

Android 控制屏幕唤醒常亮或熄灭_android实现拿起手机亮屏-程序员宅基地

文章浏览阅读4.4k次。需求:在诗词曲文项目中,诗词整篇朗读的时候,文章没有读完会因为屏幕熄灭停止朗读。要求:在文章没有朗读完毕之前屏幕常亮,读完以后屏幕常亮关闭;1.权限配置:设置电源管理的权限。

随便推点

目标检测简介-程序员宅基地

文章浏览阅读2.3k次。目标检测简介、评估标准、经典算法_目标检测

记SQL server安装后无法连接127.0.0.1解决方法_sqlserver 127 0 01 无法连接-程序员宅基地

文章浏览阅读6.3k次,点赞4次,收藏9次。实训时需要安装SQL server2008 R所以我上网上找了一个.exe 的安装包链接:https://pan.baidu.com/s/1_FkhB8XJy3Js_rFADhdtmA提取码:ztki注:解压后1.04G安装时Microsoft需下载.NET,更新安装后会自动安装如下:点击第一个傻瓜式安装,唯一注意的是在修改路径的时候如下不可修改:到安装实例的时候就可以修改啦数据..._sqlserver 127 0 01 无法连接

js 获取对象的所有key值,用来遍历_js 遍历对象的key-程序员宅基地

文章浏览阅读7.4k次。1. Object.keys(item); 获取到了key之后就可以遍历的时候直接使用这个进行遍历所有的key跟valuevar infoItem={ name:'xiaowu', age:'18',}//的出来的keys就是[name,age]var keys=Object.keys(infoItem);2. 通常用于以下实力中 <div *ngFor="let item of keys"> <div>{{item}}.._js 遍历对象的key

粒子群算法(PSO)求解路径规划_粒子群算法路径规划-程序员宅基地

文章浏览阅读2.2w次,点赞51次,收藏310次。粒子群算法求解路径规划路径规划问题描述    给定环境信息,如果该环境内有障碍物,寻求起始点到目标点的最短路径, 并且路径不能与障碍物相交,如图 1.1.1 所示。1.2 粒子群算法求解1.2.1 求解思路    粒子群优化算法(PSO),粒子群中的每一个粒子都代表一个问题的可能解, 通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。    在路径规划中,我们将每一条路径规划为一个粒子,每个粒子群群有 n 个粒 子,即有 n 条路径,同时,每个粒子又有 m 个染色体,即中间过渡点的_粒子群算法路径规划

量化评价:稳健的业绩评价指标_rar 海龟-程序员宅基地

文章浏览阅读353次。所谓稳健的评估指标,是指在评估的过程中数据的轻微变化并不会显著的影响一个统计指标。而不稳健的评估指标则相反,在对交易系统进行回测时,参数值的轻微变化会带来不稳健指标的大幅变化。对于不稳健的评估指标,任何对数据有影响的因素都会对测试结果产生过大的影响,这很容易导致数据过拟合。_rar 海龟

IAP在ARM Cortex-M3微控制器实现原理_value line devices connectivity line devices-程序员宅基地

文章浏览阅读607次,点赞2次,收藏7次。–基于STM32F103ZET6的UART通讯实现一、什么是IAP,为什么要IAPIAP即为In Application Programming(在应用中编程),一般情况下,以STM32F10x系列芯片为主控制器的设备在出厂时就已经使用J-Link仿真器将应用代码烧录了,如果在设备使用过程中需要进行应用代码的更换、升级等操作的话,则可能需要将设备返回原厂并拆解出来再使用J-Link重新烧录代码,这就增加了很多不必要的麻烦。站在用户的角度来说,就是能让用户自己来更换设备里边的代码程序而厂家这边只需要提供给_value line devices connectivity line devices