基于静电放电算法优化的广义回归神经网络(GRNN)预测-程序员宅基地

技术标签: 算法  机器学习  # 广义回归神经网络(GRNN)  神经网络  智能优化算法应用  回归  

基于静电放电算法优化的广义回归神经网络(GRNN)预测


摘要:本文介绍基于静电放电算法优化的广义神经网络(GRNN)预测,并将其应用于货物量预测

1.GRNN 神经网络概述

广义回归神经网络 CGRNN, Generalized Regression Neural Network)是美国学者 Don-aid F. Specht 在 1991 年提出的,它是径向基神经网络的一种。 GRNN 具有很强的非线性映射能力和柔性网络结构以及高度的容错性和鲁棒性,适用于解决非线性问题。 GRNN在逼近 能力和学习速度上较 RBF 网络有更强的优势,网络最后收敛于样本量积聚较多的优化回归 面,并且在样本数据较少时,预测效果也好。此外,网络还可以处理不稳定的数据。因此, GRNN 在信号过程、结构分析、教育产业、能源、食品科学、控制决策系统、药物设计、金融领域、生物工程等各个领域得到了广泛的应用 。

2.GRNN 的网络结构

GRNN 在结构上与 RBF 网络较为相似。它由四层构成,如图1所示,分别为输入层(input layer)、模式层( pattern layer)、求和层 ( summation layer)和输出层( output layer)。对 应网络输入 X = [ x 1 , x 2 , . . . , x n ] T X = [x_1,x_2,...,x_n]^T X=[x1,x2,...,xn]T,其输出为 Y = [ y 1 , y 2 , . . . , y n ] T Y = [y_1,y_2,...,y_n]^T Y=[y1,y2,...,yn]T

在这里插入图片描述

图1 .GRNN网络结构

(1)输入层

输入层神经元的数目等于学习样本中输入向量的维数,各神经元是简单的分布单元,直接将输入变量传递给模式层。

(2)模式层

模式层神经元数目等于学习样本的数目 η ,各神经元对应不 同的样本,模式层神经元传递函数为:
p i = e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] i = 1 , 2 , . . . , n (1) p_i = exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}] i =1,2,...,n \tag{1} pi=exp[2σ2(XXi)T(XXi)]i=1,2,...,n(1)
神经元 i i i 的输出为输入变量与其对应的样本 X X X 之间 Euclid 距离平方的指数平方 D i 2 = ( X − X i ) T ( X − X i ) D_i^2= (X-X_i)^T(X-X_i ) Di2(XXi)T(XXi 的指数形式 。式中, X X X 为网络输入变量; X i X_i Xi 为第 i 个神经元对应的学习样本。

(3)求和层

求和层中使用两种类型神经元进行求和。

一类的计算公式为 ∑ i = 1 n e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] \sum_{i=1}^n exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}] i=1nexp[2σ2(XXi)T(XXi)],它对所有模式层神经元的输出进行算术求和,其模式层与各神经元的连接权值为1 ,传递函数为:
S D = ∑ i = 1 n P i (2) S_D = \sum_{i=1}^nP_i\tag{2} SD=i=1nPi(2)
另 一类计算公式为 ∑ i = 1 n Y i e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] \sum_{i=1}^nY_i exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}] i=1nYiexp[2σ2(XXi)T(XXi)],它对所有模式层的神经元进行加权求和,模式层中第 i 个神经元与求和层中第 j 个分子求和神经元之间的连接权值为第 i 个输 出样本 Y i Y_i Yi中的第 j 个元素,传递函数为:
S N j = ∑ i = 1 n y i j P i , j = 1 , 2 , . . . , k (3) S_{Nj} = \sum_{i=1}^n y_{ij}P_i ,j = 1,2,...,k\tag{3} SNj=i=1nyijPi,j=1,2,...,k(3)
(4)输出层

输出层中的神经元数目等于学习样本中输出向量的维数h ,各神经元将求和层的输出相除 , 神经元 j 的输出对应估计结果Y( X) 的第 j 个元素,即:
y j = S N j S D , j = 1 , 2 , . . . , k (4) y_j = \frac{S_{Nj}}{S_D},j=1,2,...,k \tag{4} yj=SDSNj,j=1,2,...,k(4)

3.GRNN的理论基础

广义回归神经网络的理论基础是非线性回归分析 , 非独立变量 Y 相对于独立变量x的回归分析实际上是计算具有最大概率值的 y. 设随机变量x和随机变量 y 的联合概率密度函数 为f(x,y),已知 x 的观测值为 X ,则 y 相对于 X 的回归,也即条件均值为:

KaTeX parse error: \tag works only in display equations

Y即为在输入为 X 的条件下,Y 的预测输出 。

应用 Parzen 非参数估计,可由样本数据集 x i , y i i = 1 n {x_i,y_i}_{i=1}^n xi,yii=1n估算密度函数 f ′ ( X , y ) f'(X,y) f(X,y)
f ′ ( X , y ) = ∑ i = 1 n e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] e x p [ − ( X − Y i ) 2 2 σ 2 ] / ( n ( 2 π ) p + 1 2 σ p + 1 ) (6) f'(X,y) =\sum_{i=1}^n exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}]exp[-\frac{(X-Y_i)^2}{2\sigma^2}]/(n(2\pi)^{\frac{p+1}{2}}\sigma^{p+1}) \tag{6} f(X,y)=i=1nexp[2σ2(XXi)T(XXi)]exp[2σ2(XYi)2]/(n(2π)2p+1σp+1)(6)
式中, X i X_i Xi Y i Y_i Yi, 为随机变量 x 和 y 的样本观测值; n n n为样本容量; p p p为随机变量 x x x的维数; σ σ σ为高斯函数的宽度系数,在此称为光滑因子。

f ( X , y ) f(X,y) f(X,y)代替 f ( X , y ) f(X,y) f(X,y)代人式,并交换积分与加和的顺序:
Y ( X ) = ∑ i = 1 n e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] ∫ − ∞ ∞ y e x p [ − ( Y − Y i ) 2 / ( 2 σ 2 ) ] d y ∑ i = 1 n e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] ∫ − ∞ ∞ e x p [ − ( Y − Y i ) 2 / ( 2 σ 2 ) ] d y (7) Y(X) = \frac{\sum_{i=1}^n exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}]\int_{-\infty}^{\infty}yexp[-(Y-Y_i)^2/(2\sigma^2)]dy}{\sum_{i=1}^n exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}]\int_{-\infty}^{\infty}exp[-(Y-Y_i)^2/(2\sigma^2)]dy}\tag{7} Y(X)=i=1nexp[2σ2(XXi)T(XXi)]exp[(YYi)2/(2σ2)]dyi=1nexp[2σ2(XXi)T(XXi)]yexp[(YYi)2/(2σ2)]dy(7)
由于 ∫ − ∞ ∞ z e − x 2 d z = 0 \int _{-\infty}^{\infty}ze^{-x^2}dz = 0 zex2dz=0,对两个积分进行计算后可得网络的输出Y(X)为:
Y ( X ) = ∑ i = 1 n Y i e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] ∑ i = 1 n e x p [ − ( X − X i ) T ( X − X i ) 2 σ 2 ] (8) Y(X) = \frac{\sum_{i=1}^nY_i exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}]}{\sum_{i=1}^n exp[-\frac{(X-X_i)^T(X-X_i)}{2\sigma^2}]} \tag{8} Y(X)=i=1nexp[2σ2(XXi)T(XXi)]i=1nYiexp[2σ2(XXi)T(XXi)](8)
估计值 Y ( X ) Y(X) Y(X)为所有样本观测值 Y i Y_i Yi的加权平均,每个观测值 Y i Y_i Yi的权重因子为相应的样本 X i X_i Xi X X X之间 Euclid 距离平方的指数 . 当光滑因子 σ 非常大的时候 , Y ( X ) Y(X) Y(X)近似于所有样本因变量的均值 。 相反,当光滑因子σ 。趋向于0 的时候, Y ( X ) Y(X) Y(X)和训练样本非常接近,当需预测的点被包含在训练样本集中时,公式求出的因变量的预测值会和样本中对应的因变量非常接近, 而一旦碰到样本中未能包含进去的点,有可能预测效果会非常差 , 这种现象说明网络的泛化能力差。当σ取值适中,求预测值 Y ( X ) Y(X) Y(X)时,所有训练样本的因变量都被考虑了进去,与预测点距离近的样本点对应的因变量被加了更大的权。

4.数据集

数据信息如下:

data.mat 的中包含input数据和output数据

其中input数据维度为:2000*2

其中output数据维度为2000*1

所以RF模型的数据输入维度为2;输出维度为1。

5.静电放电算法优化GRNN

静电放电算法原理请参考:https://blog.csdn.net/u011835903/article/details/118755197

优化参数主要是GRNN的光滑因子 σ \sigma σ参数。是适应度函数设计为:
f i n t e n e s s = M S E [ p r e d i c t ( t r a i n ) ] + M S E [ p r e d i c t ( t e s t ) ] finteness = MSE[predict(train)] + MSE[predict(test)] finteness=MSE[predict(train)]+MSE[predict(test)]
适应度函数选取训练后的MSE误差。MSE误差越小表明预测的数据与原始数据重合度越高。最终优化的输出为,最佳的光滑因子。

6.实验结果

静电放电算法的参数设置如下:

%% 静电放电算法
pop = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = 0.01;%下边界
ub = 2;%上边界
dim = 1;%维度
fobj = @(spread) fun(spread,Pn_train,Tn_train,Pn_test,Tn_test);
[Best_pos,Best_score,SSA_curve]=SSA(pop,Max_iteration,lb,ub,dim,fobj); %开始优化

经过静电放电算法优化的结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从MSE 误差曲线可以看出,静电放电优化的GRNN结果更好

7.Matlab代码

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/u011835903/article/details/137717230

智能推荐

分布式光纤传感器的全球与中国市场2022-2028年:技术、参与者、趋势、市场规模及占有率研究报告_预计2026年中国分布式传感器市场规模有多大-程序员宅基地

文章浏览阅读3.2k次。本文研究全球与中国市场分布式光纤传感器的发展现状及未来发展趋势,分别从生产和消费的角度分析分布式光纤传感器的主要生产地区、主要消费地区以及主要的生产商。重点分析全球与中国市场的主要厂商产品特点、产品规格、不同规格产品的价格、产量、产值及全球和中国市场主要生产商的市场份额。主要生产商包括:FISO TechnologiesBrugg KabelSensor HighwayOmnisensAFL GlobalQinetiQ GroupLockheed MartinOSENSA Innovati_预计2026年中国分布式传感器市场规模有多大

07_08 常用组合逻辑电路结构——为IC设计的延时估计铺垫_基4布斯算法代码-程序员宅基地

文章浏览阅读1.1k次,点赞2次,收藏12次。常用组合逻辑电路结构——为IC设计的延时估计铺垫学习目的:估计模块间的delay,确保写的代码的timing 综合能给到多少HZ,以满足需求!_基4布斯算法代码

OpenAI Manager助手(基于SpringBoot和Vue)_chatgpt网页版-程序员宅基地

文章浏览阅读3.3k次,点赞3次,收藏5次。OpenAI Manager助手(基于SpringBoot和Vue)_chatgpt网页版

关于美国计算机奥赛USACO,你想知道的都在这_usaco可以多次提交吗-程序员宅基地

文章浏览阅读2.2k次。USACO自1992年举办,到目前为止已经举办了27届,目的是为了帮助美国信息学国家队选拔IOI的队员,目前逐渐发展为全球热门的线上赛事,成为美国大学申请条件下,含金量相当高的官方竞赛。USACO的比赛成绩可以助力计算机专业留学,越来越多的学生进入了康奈尔,麻省理工,普林斯顿,哈佛和耶鲁等大学,这些同学的共同点是他们都参加了美国计算机科学竞赛(USACO),并且取得过非常好的成绩。适合参赛人群USACO适合国内在读学生有意向申请美国大学的或者想锻炼自己编程能力的同学,高三学生也可以参加12月的第_usaco可以多次提交吗

MySQL存储过程和自定义函数_mysql自定义函数和存储过程-程序员宅基地

文章浏览阅读394次。1.1 存储程序1.2 创建存储过程1.3 创建自定义函数1.3.1 示例1.4 自定义函数和存储过程的区别1.5 变量的使用1.6 定义条件和处理程序1.6.1 定义条件1.6.1.1 示例1.6.2 定义处理程序1.6.2.1 示例1.7 光标的使用1.7.1 声明光标1.7.2 打开光标1.7.3 使用光标1.7.4 关闭光标1.8 流程控制的使用1.8.1 IF语句1.8.2 CASE语句1.8.3 LOOP语句1.8.4 LEAVE语句1.8.5 ITERATE语句1.8.6 REPEAT语句。_mysql自定义函数和存储过程

半导体基础知识与PN结_本征半导体电流为0-程序员宅基地

文章浏览阅读188次。半导体二极管——集成电路最小组成单元。_本征半导体电流为0

随便推点

【Unity3d Shader】水面和岩浆效果_unity 岩浆shader-程序员宅基地

文章浏览阅读2.8k次,点赞3次,收藏18次。游戏水面特效实现方式太多。咱们这边介绍的是一最简单的UV动画(无顶点位移),整个mesh由4个顶点构成。实现了水面效果(左图),不动代码稍微修改下参数和贴图可以实现岩浆效果(右图)。有要思路是1,uv按时间去做正弦波移动2,在1的基础上加个凹凸图混合uv3,在1、2的基础上加个水流方向4,加上对雾效的支持,如没必要请自行删除雾效代码(把包含fog的几行代码删除)S..._unity 岩浆shader

广义线性模型——Logistic回归模型(1)_广义线性回归模型-程序员宅基地

文章浏览阅读5k次。广义线性模型是线性模型的扩展,它通过连接函数建立响应变量的数学期望值与线性组合的预测变量之间的关系。广义线性模型拟合的形式为:其中g(μY)是条件均值的函数(称为连接函数)。另外,你可放松Y为正态分布的假设,改为Y 服从指数分布族中的一种分布即可。设定好连接函数和概率分布后,便可以通过最大似然估计的多次迭代推导出各参数值。在大部分情况下,线性模型就可以通过一系列连续型或类别型预测变量来预测正态分布的响应变量的工作。但是,有时候我们要进行非正态因变量的分析,例如:(1)类别型.._广义线性回归模型

HTML+CSS大作业 环境网页设计与实现(垃圾分类) web前端开发技术 web课程设计 网页规划与设计_垃圾分类网页设计目标怎么写-程序员宅基地

文章浏览阅读69次。环境保护、 保护地球、 校园环保、垃圾分类、绿色家园、等网站的设计与制作。 总结了一些学生网页制作的经验:一般的网页需要融入以下知识点:div+css布局、浮动、定位、高级css、表格、表单及验证、js轮播图、音频 视频 Flash的应用、ul li、下拉导航栏、鼠标划过效果等知识点,网页的风格主题也很全面:如爱好、风景、校园、美食、动漫、游戏、咖啡、音乐、家乡、电影、名人、商城以及个人主页等主题,学生、新手可参考下方页面的布局和设计和HTML源码(有用点赞△) 一套A+的网_垃圾分类网页设计目标怎么写

C# .Net 发布后,把dll全部放在一个文件夹中,让软件目录更整洁_.net dll 全局目录-程序员宅基地

文章浏览阅读614次,点赞7次,收藏11次。之前找到一个修改 exe 中 DLL地址 的方法, 不太好使,虽然能正确启动, 但无法改变 exe 的工作目录,这就影响了.Net 中很多获取 exe 执行目录来拼接的地址 ( 相对路径 ),比如 wwwroot 和 代码中相对目录还有一些复制到目录的普通文件 等等,它们的地址都会指向原来 exe 的目录, 而不是自定义的 “lib” 目录,根本原因就是没有修改 exe 的工作目录这次来搞一个启动程序,把 .net 的所有东西都放在一个文件夹,在文件夹同级的目录制作一个 exe._.net dll 全局目录

BRIEF特征点描述算法_breif description calculation 特征点-程序员宅基地

文章浏览阅读1.5k次。本文为转载,原博客地址:http://blog.csdn.net/hujingshuang/article/details/46910259简介 BRIEF是2010年的一篇名为《BRIEF:Binary Robust Independent Elementary Features》的文章中提出,BRIEF是对已检测到的特征点进行描述,它是一种二进制编码的描述子,摈弃了利用区域灰度..._breif description calculation 特征点

房屋租赁管理系统的设计和实现,SpringBoot计算机毕业设计论文_基于spring boot的房屋租赁系统论文-程序员宅基地

文章浏览阅读4.1k次,点赞21次,收藏79次。本文是《基于SpringBoot的房屋租赁管理系统》的配套原创说明文档,可以给应届毕业生提供格式撰写参考,也可以给开发类似系统的朋友们提供功能业务设计思路。_基于spring boot的房屋租赁系统论文

推荐文章

热门文章

相关标签