二叉树排序中实现查找算法c语言,算法_数据结构二叉树(排序的)插入、查找、删除代码...-程序员宅基地

技术标签: 二叉树排序中实现查找算法c语言  

二叉树的关键概念:

每个节点是一个自引用结构体,形式如下:

struct TreeNode {

struct TreeNode *leftPtr;

int data;

struct TreeNode *rightPtr;

};

部节点开始,每个节点拥有两个子节点(NULL或者一个节点),称为左节点与右节点,每个节点的左部分与右部分又分别称为该节点的左子树与右子树。

每个节点的键值大于左节点,小于右节点;每个节点的键值大于左子树所有节点的键值,小于右子树所有节点的键值。所以二叉树是按节点键值排序的数据结构。

二叉树的某个节点,如果不是叶节点,则有左子树或右子树,是一个更小的树,因此可以递归地处理关于树的一些问题。

二叉树的插入

思路:将要插入节点的键值与根节点键值比较,如果小于根节点键值,则插入根节点的左子树,如果大于根节点的键值,则插入根节点的右子树,插入子树相当于插入一个更小的树,因此可以用递归方法实现,直到找到没有子树的节点,将新节点插到其下面。注意,新节点插入后,最终只会成为叶节点。

函数代码如下(测试插入、删除、打印功能的源码在最后面,此处只给出插入函数代码):

void insertNode(TreeNodePtr *treePtr, int value)

{

if (*treePtr == NULL) {

*treePtr = malloc(sizeof(TreeNode));

if (*treePtr != NULL) {

(*treePtr)->data = value;

(*treePtr)->leftPtr = NULL;

(*treePtr)->rightPtr = NULL;

}

else {

printf("%d not inserted. No memory available.\n", value);

}

}

else {

if (value < (*treePtr)->data) {

insertNode(&((*treePtr)->leftPtr), value);

}

else {

if (value >(*treePtr)->data) {

insertNode(&((*treePtr)->rightPtr), value);

}

else {

printf("dup");

}

}

}

}

1

二叉树的查找

思路:与插入类似,从根节点开始,将查找的键值与根节点键值比较,若相等,则返回指向该节点的指针,若查找的键值比它大,则从根节点的右子树开始查找,若查找的键值比它小,则从根节点的左子树开始查找。可以用递归方法实现,类似于插入。这里我用迭代实现,能用迭代还是用迭代,因为递归开销比较大。

函数代码如下:

TreeNode *binaryTreeSereach(TreeNode * const treePtr, int value)

{

TreeNode *tempPtr = treePtr;

while (tempPtr != NULL && tempPtr->data != value)

{

if (value > tempPtr->data)

tempPtr = tempPtr->rightPtr;

else

tempPtr = tempPtr->leftPtr;

}

return tempPtr;

}

1

2

3

4

二叉树的删除

相比于二叉树的插入和查找,删除一个节点要复杂一些,原因是要保证二叉树的排序性质。二叉树删除有如下三种情况:

1.

删除节点是叶节点,即没有子节点,或者说左右子节点都是NULL。这种情况下,只需要把删除节点的父节点中对应的指针指向NULL即可。然后释放掉删除节点的空间。

2.

删除节点有一个子节点(左子节点或右子节点),这种情况下,把删除节点的父节点中对应的指针指向删除节点的子节点即可。然后释放掉删除节点的空间

3.

删除节点有两个子节点,这种情况下,必须要找到一个替代删除节点的替代节点,并且保证二叉树的排序性。根据二叉树的排序性,可知替代节点的键值必须最接近删除节点键值。比删除节点键值小的所有键值中最大那个,或者是比删除节点键值大的所有键值中最小的那个,是符合要求的。这两个键值所在的节点分别在删除节点的左子树中最右边的节点,删除节点右子树中最左边的节点。以从左子树中找最大键值节点为例,算法如下:

找到删除节点以及它的父节点

在删除节点的左子树中,向下向右遍历,找到替代节点以及它的父节点

删除节点的父节点中对应的指针指向替代节点

替代节点中的右子节点指针指向删除节点的右子树

如果替代节点的父节点不是删除节点,则将替代节点的左子节点指针指向删除节点的左子树,并且替代节点的父节点中对应的指针指向替代节点的左子节点

释放删除节点的空间 注意:第二步中找到的替代节点,可能会有左子树,但一定没有右子树。第五步要判断替代节点的父节点不是删除节点后,才将替代节点的左子节点指针指向删除节点的左子树,否则会出现替代节点左子节点指针指向自己的情况,从而丢失替代节点的左子树。

另外,还有一种实现相同效果的的方法,即将替代节点中的数据赋给删除节点,然后释放替代节点的空间。这种方法其实是删除了替代节点,并没有真正删除想要删除的节点。而且如果节点包括一个键值和很多其他的数据,则赋值语句会很多。在最后面的测试过程中,我也给出了这个函数的实现,void

deleteNode2(TreeNode **treePtrP, int value)

代码如下:

void deleteNode(TreeNode **treePtrP, int value)

{

TreeNode *deleteNodePtr = *treePtrP;

TreeNode *parentNodeOfDeletePtr = NULL;

TreeNode *substituteNodePtr;

TreeNode *parentNodeOfSubstitutePtr;

//find deleNode and its parentNode

while (deleteNodePtr != NULL && value != deleteNodePtr->data)

{

parentNodeOfDeletePtr = deleteNodePtr;

if (deleteNodePtr->data > value)

{

deleteNodePtr = deleteNodePtr->leftPtr;

}

else

{

deleteNodePtr = deleteNodePtr->rightPtr;

}

}

//case that can't find such Node

if (deleteNodePtr == NULL)

{

printf("no such Node, delete fail\n\n");

return;

}

//delete a leafNode

if (deleteNodePtr->leftPtr == NULL && deleteNodePtr->rightPtr == NULL)

{

//delete Node is root

if (parentNodeOfDeletePtr == NULL)

{

*treePtrP = NULL;

}

else if (parentNodeOfDeletePtr->leftPtr == deleteNodePtr)

{

parentNodeOfDeletePtr->leftPtr = NULL;

}

else

{

parentNodeOfDeletePtr->rightPtr = NULL;

}

}

//delete a Node which has a left child Node

else if (deleteNodePtr->leftPtr != NULL && deleteNodePtr->rightPtr == NULL)

{

//delete Node is root

if (parentNodeOfDeletePtr == NULL)

{

*treePtrP = deleteNodePtr->leftPtr;

}

else if (parentNodeOfDeletePtr->rightPtr == deleteNodePtr)

parentNodeOfDeletePtr->rightPtr = deleteNodePtr->leftPtr;

else

parentNodeOfDeletePtr->leftPtr = deleteNodePtr->leftPtr;

}

//delete a Node which has a right child Node

else if (deleteNodePtr->leftPtr == NULL && deleteNodePtr->rightPtr != NULL)

{

//delete Node is root

if (parentNodeOfDeletePtr == NULL)

{

*treePtrP = deleteNodePtr->rightPtr;

}

else if (parentNodeOfDeletePtr->rightPtr == deleteNodePtr)

parentNodeOfDeletePtr->rightPtr = deleteNodePtr->rightPtr;

else

parentNodeOfDeletePtr->leftPtr = deleteNodePtr->rightPtr;

}

//delete a Node which has a left and a right child Node

else

{

parentNodeOfSubstitutePtr = deleteNodePtr;

substituteNodePtr = deleteNodePtr->leftPtr;

//search down and right to find substituteNode and its parentNode

while (substituteNodePtr->rightPtr != NULL)

{

parentNodeOfSubstitutePtr = substituteNodePtr;

substituteNodePtr = substituteNodePtr->rightPtr;

}

//delete Node is root

if (parentNodeOfDeletePtr == NULL)

{

*treePtrP = substituteNodePtr;

}

else if (parentNodeOfDeletePtr->leftPtr == deleteNodePtr)

{

parentNodeOfDeletePtr->leftPtr = substituteNodePtr;

}

else

{

parentNodeOfDeletePtr->rightPtr = substituteNodePtr;

}

substituteNodePtr->rightPtr = deleteNodePtr->rightPtr;

if (parentNodeOfSubstitutePtr != deleteNodePtr)

{

substituteNodePtr->leftPtr = deleteNodePtr->leftPtr;

if (parentNodeOfSubstitutePtr->leftPtr == substituteNodePtr)

{

parentNodeOfSubstitutePtr->leftPtr = substituteNodePtr->leftPtr;

}

else

{

parentNodeOfSubstitutePtr->rightPtr = substituteNodePtr->leftPtr;

}

}

}

free(deleteNodePtr);

}

二叉树的打印

从根节点开始,先输出右子树,再输出节点键值,再输出左子树。采用递归法 代码如下:

void outputTree(TreeNodePtr treePtr, int spaces)

{

int loop;

while (treePtr != NULL) {

outputTree(treePtr->rightPtr, spaces + 4);

for (loop = 1; loop <= spaces; loop++) {

printf(" ");

}

printf("%d\n", treePtr->data);

outputTree(treePtr->leftPtr, spaces + 4);

treePtr = NULL;

}

}

1

2

3

4

5

6

测试结果截图

a4c26d1e5885305701be709a3d33442f.png

a4c26d1e5885305701be709a3d33442f.png

a4c26d1e5885305701be709a3d33442f.png

测试插入、删除、打印树源码

#include

#include

#include

struct TreeNode {

struct TreeNode *leftPtr;

int data;

struct TreeNode *rightPtr;

};

typedef struct TreeNode TreeNode;

void insertNode(TreeNode **treePtr, int value);

TreeNode * binaryTreeSereach(TreeNode * const treePtr, int value);

void deleteNode(TreeNode **treePtrP, int value);

void outputTree(TreeNode *treePtr, int spaces);

void deleteNode2(TreeNode **treePtrP, int value);

int main(void)

{

int arr[] = { 45, 83, 28, 97, 71, 40, 18, 77, 99, 92, 72, 69, 44, 32, 19, 11 };

int i;

int item;

int totalSpaces = 0;

TreeNode *rootPtr = NULL;

srand(time(NULL));

printf("The numbers being placed in the tree are:\n\n");

for (i = 0; i < sizeof(arr) / sizeof(int); i++) {

item = arr[i];

printf("=", item);

insertNode(&rootPtr, item);

}

printf("\n\n\nnow the tree is:\n\n");

if (rootPtr == NULL)

printf("empty tree\n");

else

outputTree(rootPtr, totalSpaces);

//random delete Nodes, then output the tree

while (rootPtr != NULL)

{

item = rand() % 16;

printf("\n\nafter delete %d:\n\n", arr[item]);

deleteNode2(&rootPtr, arr[item]);

if (rootPtr == NULL)

printf("empty tree\n");

else

outputTree(rootPtr, totalSpaces);

}

return 0;

}

void insertNode(TreeNode **treePtr, int value)

{

if (*treePtr == NULL) {

*treePtr = malloc(sizeof(TreeNode));

if (*treePtr != NULL) {

(*treePtr)->data = value;

(*treePtr)->leftPtr = NULL;

(*treePtr)->rightPtr = NULL;

}

else {

printf("%d not inserted. No memory available.\n", value);

}

}

else {

if (value < (*treePtr)->data) {

insertNode(&((*treePtr)->leftPtr), value);

}

else {

if (value >(*treePtr)->data) {

insertNode(&((*treePtr)->rightPtr), value);

}

else {

printf("dup");

}

}

}

}

TreeNode *binaryTreeSereach(TreeNode * const treePtr, int value)

{

TreeNode *tempPtr = treePtr;

while (tempPtr != NULL && tempPtr->data != value)

{

if (value > tempPtr->data)

tempPtr = tempPtr->rightPtr;

else

tempPtr = tempPtr->leftPtr;

}

return tempPtr;

}

void deleteNode(TreeNode **treePtrP, int value)

{

TreeNode *deleteNodePtr = *treePtrP;

TreeNode *parentNodeOfDeletePtr = NULL;

TreeNode *substituteNodePtr;

TreeNode *parentNodeOfSubstitutePtr;

//find deleNode and its parentNode

while (deleteNodePtr != NULL && value != deleteNodePtr->data)

{

parentNodeOfDeletePtr = deleteNodePtr;

if (deleteNodePtr->data > value)

{

deleteNodePtr = deleteNodePtr->leftPtr;

}

else

{

deleteNodePtr = deleteNodePtr->rightPtr;

}

}

//case that can't find such Node

if (deleteNodePtr == NULL)

{

printf("no such Node, delete fail\n\n");

return;

}

//delete a leafNode

if (deleteNodePtr->leftPtr == NULL && deleteNodePtr->rightPtr == NULL)

{

//delete Node is root

if (parentNodeOfDeletePtr == NULL)

{

*treePtrP = NULL;

}

else if (parentNodeOfDeletePtr->leftPtr == deleteNodePtr)

{

parentNodeOfDeletePtr->leftPtr = NULL;

}

else

{

parentNodeOfDeletePtr->rightPtr = NULL;

}

}

//delete a Node which has a left child Node

else if (deleteNodePtr->leftPtr != NULL && deleteNodePtr->rightPtr == NULL)

{

//delete Node is root

if (parentNodeOfDeletePtr == NULL)

{

*treePtrP = deleteNodePtr->leftPtr;

}

else if (parentNodeOfDeletePtr->rightPtr == deleteNodePtr)

parentNodeOfDeletePtr->rightPtr = deleteNodePtr->leftPtr;

else

parentNodeOfDeletePtr->leftPtr = deleteNodePtr->leftPtr;

}

//delete a Node which has a right child Node

else if (deleteNodePtr->leftPtr == NULL && deleteNodePtr->rightPtr != NULL)

{

//delete Node is root

if (parentNodeOfDeletePtr == NULL)

{

*treePtrP = deleteNodePtr->rightPtr;

}

else if (parentNodeOfDeletePtr->rightPtr == deleteNodePtr)

parentNodeOfDeletePtr->rightPtr = deleteNodePtr->rightPtr;

else

parentNodeOfDeletePtr->leftPtr = deleteNodePtr->rightPtr;

}

//delete a Node which has a left and a right child Node

else

{

parentNodeOfSubstitutePtr = deleteNodePtr;

substituteNodePtr = deleteNodePtr->leftPtr;

//search down and right to find substituteNode and its parentNode

while (substituteNodePtr->rightPtr != NULL)

{

parentNodeOfSubstitutePtr = substituteNodePtr;

substituteNodePtr = substituteNodePtr->rightPtr;

}

//delete Node is root

if (parentNodeOfDeletePtr == NULL)

{

*treePtrP = substituteNodePtr;

}

else if (parentNodeOfDeletePtr->leftPtr == deleteNodePtr)

{

parentNodeOfDeletePtr->leftPtr = substituteNodePtr;

}

else

{

parentNodeOfDeletePtr->rightPtr = substituteNodePtr;

}

substituteNodePtr->rightPtr = deleteNodePtr->rightPtr;

if (parentNodeOfSubstitutePtr != deleteNodePtr)

{

substituteNodePtr->leftPtr = deleteNodePtr->leftPtr;

if (parentNodeOfSubstitutePtr->leftPtr == substituteNodePtr)

{

parentNodeOfSubstitutePtr->leftPtr = substituteNodePtr->leftPtr;

}

else

{

parentNodeOfSubstitutePtr->rightPtr = substituteNodePtr->leftPtr;

}

}

}

free(deleteNodePtr);

}

void outputTree(TreeNode *treePtr, int spaces)

{

int loop;

while (treePtr != NULL) {

outputTree(treePtr->rightPtr, spaces + 4);

for (loop = 1; loop <= spaces; loop++) {

printf(" ");

}

printf("%d\n", treePtr->data);

outputTree(treePtr->leftPtr, spaces + 4);

treePtr = NULL;

}

}

void deleteNode2(TreeNode **treePtrP, int value)

{

TreeNode *deleteNodePtr = *treePtrP;

TreeNode *parentNodeOfDeletePtr = NULL;

TreeNode *substituteNodePtr;

TreeNode *parentNodeOfSubstitutePtr;

//find deleNode and its parentNode

while (deleteNodePtr != NULL && value != deleteNodePtr->data)

{

parentNodeOfDeletePtr = deleteNodePtr;

if (deleteNodePtr->data > value)

{

deleteNodePtr = deleteNodePtr->leftPtr;

}

else

{

deleteNodePtr = deleteNodePtr->rightPtr;

}

}

//case that can't find such Node

if (deleteNodePtr == NULL)

{

printf("no such Node, delete fail\n\n");

return;

}

// delete a leafNode

if (deleteNodePtr->leftPtr == NULL && deleteNodePtr->rightPtr == NULL)

{

//delete Node is root

if (parentNodeOfDeletePtr == NULL)

{

*treePtrP = NULL;

}

else if (parentNodeOfDeletePtr->leftPtr == deleteNodePtr)

{

parentNodeOfDeletePtr->leftPtr = NULL;

}

else

{

parentNodeOfDeletePtr->rightPtr = NULL;

}

}

//delete a Node which has a left child Node

else if (deleteNodePtr->leftPtr != NULL && deleteNodePtr->rightPtr == NULL)

{

//delete Node is root

if (parentNodeOfDeletePtr == NULL)

{

*treePtrP = deleteNodePtr->leftPtr;

}

else if (parentNodeOfDeletePtr->rightPtr == deleteNodePtr)

parentNodeOfDeletePtr->rightPtr = deleteNodePtr->leftPtr;

else

parentNodeOfDeletePtr->leftPtr = deleteNodePtr->leftPtr;

}

//delete a Node which has a right child Node

else if (deleteNodePtr->leftPtr == NULL && deleteNodePtr->rightPtr != NULL)

{

//delete Node is root

if (parentNodeOfDeletePtr == NULL)

{

*treePtrP = deleteNodePtr->rightPtr;

}

else if (parentNodeOfDeletePtr->rightPtr == deleteNodePtr)

parentNodeOfDeletePtr->rightPtr = deleteNodePtr->rightPtr;

else

parentNodeOfDeletePtr->leftPtr = deleteNodePtr->rightPtr;

}

//delete a Node which has a left and a right child Node

else

{

//find substituteNode and its parentNode

parentNodeOfSubstitutePtr = deleteNodePtr;

substituteNodePtr = deleteNodePtr->leftPtr;

//search down and right

while (substituteNodePtr->rightPtr != NULL)

{

parentNodeOfSubstitutePtr = substituteNodePtr;

substituteNodePtr = substituteNodePtr->rightPtr;

}

if (parentNodeOfSubstitutePtr->leftPtr == substituteNodePtr)

{

parentNodeOfSubstitutePtr->leftPtr = substituteNodePtr->leftPtr;

}

else

{

parentNodeOfSubstitutePtr->rightPtr = substituteNodePtr->leftPtr;

}

deleteNodePtr->data = substituteNodePtr->data;

deleteNodePtr = substituteNodePtr;

}

free(deleteNodePtr);

}

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_34698121/article/details/117243560

智能推荐

hive使用适用场景_大数据入门:Hive应用场景-程序员宅基地

文章浏览阅读5.8k次。在大数据的发展当中,大数据技术生态的组件,也在不断地拓展开来,而其中的Hive组件,作为Hadoop的数据仓库工具,可以实现对Hadoop集群当中的大规模数据进行相应的数据处理。今天我们的大数据入门分享,就主要来讲讲,Hive应用场景。关于Hive,首先需要明确的一点就是,Hive并非数据库,Hive所提供的数据存储、查询和分析功能,本质上来说,并非传统数据库所提供的存储、查询、分析功能。Hive..._hive应用场景

zblog采集-织梦全自动采集插件-织梦免费采集插件_zblog 网页采集插件-程序员宅基地

文章浏览阅读496次。Zblog是由Zblog开发团队开发的一款小巧而强大的基于Asp和PHP平台的开源程序,但是插件市场上的Zblog采集插件,没有一款能打的,要么就是没有SEO文章内容处理,要么就是功能单一。很少有适合SEO站长的Zblog采集。人们都知道Zblog采集接口都是对Zblog采集不熟悉的人做的,很多人采取模拟登陆的方法进行发布文章,也有很多人直接操作数据库发布文章,然而这些都或多或少的产生各种问题,发布速度慢、文章内容未经严格过滤,导致安全性问题、不能发Tag、不能自动创建分类等。但是使用Zblog采._zblog 网页采集插件

Flink学习四:提交Flink运行job_flink定时运行job-程序员宅基地

文章浏览阅读2.4k次,点赞2次,收藏2次。restUI页面提交1.1 添加上传jar包1.2 提交任务job1.3 查看提交的任务2. 命令行提交./flink-1.9.3/bin/flink run -c com.qu.wc.StreamWordCount -p 2 FlinkTutorial-1.0-SNAPSHOT.jar3. 命令行查看正在运行的job./flink-1.9.3/bin/flink list4. 命令行查看所有job./flink-1.9.3/bin/flink list --all._flink定时运行job

STM32-LED闪烁项目总结_嵌入式stm32闪烁led实验总结-程序员宅基地

文章浏览阅读1k次,点赞2次,收藏6次。这个项目是基于STM32的LED闪烁项目,主要目的是让学习者熟悉STM32的基本操作和编程方法。在这个项目中,我们将使用STM32作为控制器,通过对GPIO口的控制实现LED灯的闪烁。这个STM32 LED闪烁的项目是一个非常简单的入门项目,但它可以帮助学习者熟悉STM32的编程方法和GPIO口的使用。在这个项目中,我们通过对GPIO口的控制实现了LED灯的闪烁。LED闪烁是STM32入门课程的基础操作之一,它旨在教学生如何使用STM32开发板控制LED灯的闪烁。_嵌入式stm32闪烁led实验总结

Debezium安装部署和将服务托管到systemctl-程序员宅基地

文章浏览阅读63次。本文介绍了安装和部署Debezium的详细步骤,并演示了如何将Debezium服务托管到systemctl以进行方便的管理。本文将详细介绍如何安装和部署Debezium,并将其服务托管到systemctl。解压缩后,将得到一个名为"debezium"的目录,其中包含Debezium的二进制文件和其他必要的资源。注意替换"ExecStart"中的"/path/to/debezium"为实际的Debezium目录路径。接下来,需要下载Debezium的压缩包,并将其解压到所需的目录。

Android 控制屏幕唤醒常亮或熄灭_android实现拿起手机亮屏-程序员宅基地

文章浏览阅读4.4k次。需求:在诗词曲文项目中,诗词整篇朗读的时候,文章没有读完会因为屏幕熄灭停止朗读。要求:在文章没有朗读完毕之前屏幕常亮,读完以后屏幕常亮关闭;1.权限配置:设置电源管理的权限。

随便推点

目标检测简介-程序员宅基地

文章浏览阅读2.3k次。目标检测简介、评估标准、经典算法_目标检测

记SQL server安装后无法连接127.0.0.1解决方法_sqlserver 127 0 01 无法连接-程序员宅基地

文章浏览阅读6.3k次,点赞4次,收藏9次。实训时需要安装SQL server2008 R所以我上网上找了一个.exe 的安装包链接:https://pan.baidu.com/s/1_FkhB8XJy3Js_rFADhdtmA提取码:ztki注:解压后1.04G安装时Microsoft需下载.NET,更新安装后会自动安装如下:点击第一个傻瓜式安装,唯一注意的是在修改路径的时候如下不可修改:到安装实例的时候就可以修改啦数据..._sqlserver 127 0 01 无法连接

js 获取对象的所有key值,用来遍历_js 遍历对象的key-程序员宅基地

文章浏览阅读7.4k次。1. Object.keys(item); 获取到了key之后就可以遍历的时候直接使用这个进行遍历所有的key跟valuevar infoItem={ name:'xiaowu', age:'18',}//的出来的keys就是[name,age]var keys=Object.keys(infoItem);2. 通常用于以下实力中 <div *ngFor="let item of keys"> <div>{{item}}.._js 遍历对象的key

粒子群算法(PSO)求解路径规划_粒子群算法路径规划-程序员宅基地

文章浏览阅读2.2w次,点赞51次,收藏310次。粒子群算法求解路径规划路径规划问题描述    给定环境信息,如果该环境内有障碍物,寻求起始点到目标点的最短路径, 并且路径不能与障碍物相交,如图 1.1.1 所示。1.2 粒子群算法求解1.2.1 求解思路    粒子群优化算法(PSO),粒子群中的每一个粒子都代表一个问题的可能解, 通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。    在路径规划中,我们将每一条路径规划为一个粒子,每个粒子群群有 n 个粒 子,即有 n 条路径,同时,每个粒子又有 m 个染色体,即中间过渡点的_粒子群算法路径规划

量化评价:稳健的业绩评价指标_rar 海龟-程序员宅基地

文章浏览阅读353次。所谓稳健的评估指标,是指在评估的过程中数据的轻微变化并不会显著的影响一个统计指标。而不稳健的评估指标则相反,在对交易系统进行回测时,参数值的轻微变化会带来不稳健指标的大幅变化。对于不稳健的评估指标,任何对数据有影响的因素都会对测试结果产生过大的影响,这很容易导致数据过拟合。_rar 海龟

IAP在ARM Cortex-M3微控制器实现原理_value line devices connectivity line devices-程序员宅基地

文章浏览阅读607次,点赞2次,收藏7次。–基于STM32F103ZET6的UART通讯实现一、什么是IAP,为什么要IAPIAP即为In Application Programming(在应用中编程),一般情况下,以STM32F10x系列芯片为主控制器的设备在出厂时就已经使用J-Link仿真器将应用代码烧录了,如果在设备使用过程中需要进行应用代码的更换、升级等操作的话,则可能需要将设备返回原厂并拆解出来再使用J-Link重新烧录代码,这就增加了很多不必要的麻烦。站在用户的角度来说,就是能让用户自己来更换设备里边的代码程序而厂家这边只需要提供给_value line devices connectivity line devices