TensorFlow变量管理-tf.get_variable和tf.variable_scope_tf.global_variables csdn-程序员宅基地

技术标签: 变量管理  机器学习  深度学习  MNIST  TensorFlow  

本文代码可在https://github.com/TimeIvyace/MNIST-TensorFlow.git中下载,程序名为train_improved1.py。

当编写程序较长时,文件中定义的函数的输入参数可能会很多,例如神经网络的参数:

def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):

当神经网络的结构更加复杂、参数更多时,就需要一个更好的方式来传递和管理神经网络中的参数。
TensorFlow就提供了通过变量名来创建或获取变量的机制,可以使用***tf.get_variable***和***tf.variable_scope***函数来实现。
TensorFlow中除了通过***tf.Variable***来创建变量,还可以使用***tf.get_variable***来创建或者获取变量。当创建变量时,两个函数基本是等价的,例如:

#下面两行代码功能相同
v = tf.get_variable("v", shape[1], initializer=tf.constant_initializer(1.0))
v = tf.Variable(tf.constant(1.0, shape=[1]), name="v")

可看出***tf.get_variable***函数调用时的维度以及初始化和***tf.Variable***类似,就像常数初始化函数***tf.constant_initializer***和常数生成函数***tf.constant***功能上是一致的。TensorFlow提供了七种不同的参数初始化函数:
变量初始化函数

***tf.get_variable***和***tf.Variable***最大的不同在于变量名称,***tf.Variable***中的变量名称是一个可选的参数,通过name=""给出;而在***tf.get_variable***函数中,变量名称是必填的一个参数。当上述代码***tf.get_variable***创建名字为v的参数时,若已经有同名的参数,则会创建失败。但是,可以通过***tf.get_variable***来获取一个已经创建的变量,这是需要使用***tf.variable_scope***函数实现,***tf.variable_scope***会生成一个上下文管理器,并明确指定在这个上下文管理器中,***tf.get_variable***将直接获得已经生成的变量。例如:

import tensorflow as tf

#在名字为foo的命名空间内创建名字为v的变量
with tf.variable_scope("foo"):
    v = tf.get_variable("v", [1], initializer=tf.constant_initializer(1.0))

#因为在命名空间foo中已经存在名字为v的变量,所以下面代码会报错
# with tf.variable_scope("foo"):
#     v = tf.get_variable("v", [1])

#在生成上下文管理器时,将参数reuse设置为True
# 这样tf.get_variable函数将直接获取已经声明的变量
with tf.variable_scope("foo", reuse=True):
    v1 = tf.get_variable("v", [1])
    print(v==v1)  #输出为True, 代表v,v1是相同的TensorFlow变量

>>True

可以看出,当***tf.variable_scope***使用参数reuse=True生成上下文管理器时,这个上下文管理器内所有的***tf.get_variable***会直接获取已经创建的变量。如果变量不存在,则会报错;但是若reuse=False或None时,***tf.get_variable***会创建新的变量,如果同名参数存在则会报错。
TensorFlow中***tf.variable_scope***函数是可以嵌套的,例如:

with tf.variable_scope("root"):
    #可以通过tf.get_variable_scope().reuse来获取当前上下文管理器中reuse的取值
    print(tf.get_variable_scope().reuse)

    with tf.variable_scope("foo", reuse=True):
        #新建嵌套的上下文管理器,指定reuse
        print(tf.get_variable_scope().reuse)
        with tf.variable_scope("bar"):
            #再新建一个嵌套的上下文管理器,若不指定reuse,则和上一层一致
            print(tf.get_variable_scope().reuse)

    #退出reuse为True的上下文后,reuse恢复为False
    print(tf.get_variable_scope().reuse)

>>False
True
True
False

***tf.variable_scope***函数生成的上下文管理器会创建一个命名空间,可以来管理变量,例如以下代码:

v1 = tf.get_variable("v", [1])
print(v1.name)
#输出v:0, "v"为变量的名称,":0"表示这个变量是生成变量这个运算的第一个结果

with tf.variable_scope("foo"):
    v2 = tf.get_variable("v", [1])
    print(v2.name)
    #输出foo/v:0
    #在tf.variable_scope中创建的变量,会加入命名空间的名称
    #通过/来分隔命名空间的名称和变量的名称

with tf.variable_scope("foo"):
    with tf.variable_scope("bar"):
        v3 = tf.get_variable("v", 1)
        print(v3.name) #命名空间可以嵌套

    v4 = tf.get_variable("v1", [1])
    print(v4.name) #当命名空间退出之后,变量名称就不会再加前缀

#创建一个名称为空的命名空间
with tf.variable_scope("", reuse=True):
    v5 = tf.get_variable("foo/bar/v", [1])
    #可以直接通过带命名空间名称的变量名来获取其他命名空间下的变量
    print(v5 == v3)
    v6 = tf.get_variable("foo/v1", [1])
    print(v6 == v4)

>>v:0
foo/v:0
foo/bar/v:0
foo/v1:0
True
True

通过***tf.variable_scope***和***tf.get_variable***函数,可以对此链接里的神经网络中的计算前向传播结果的函数做一些改进,提高代码的可读性。如下:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

INPUT_NODE = 784  #输入层的节点数,图片为28*28,为图片的像素
OUTPUT_NODE = 10   #输出层的节点数,等于类别的数目,需要区分0-9,所以为10类

#配置神经网络的参数
LAYER1_NODE = 500 #隐藏层的节点数,此神经网络只有一层隐藏层
BATCH_SIZE = 100 #一个训练batch中的训练数据个数,数字越小,越接近随机梯度下降,越大越接近梯度下降
LEARNING_RATE_BASE = 0.8 #基础的学习率
LEARNING_RATE_DECAY = 0.99 #学习率的衰减率
REGULARIZATION_RATE = 0.0001 #描述网络复杂度的正则化向在损失函数中的系数
TRAINING_STEPS = 30000 #训练轮数
MOVING_AVERAGE_DECAY = 0.99 #滑动平均衰减率

#给定神经网络的输入和所有参数,计算神经网络的前向传播结果,定义了一个使用ReLU的三层全连接神经网络,通过加入隐藏层实现了多层网络结构
def inference(input_tensor, avg_class, reuse=False):
    #定义第一层神经网络的变量和前向传播结果
    with tf.variable_scope("layer1", reuse=reuse):
        #根据传进来的reuse来判断是创建新变量还是使用已经创建好的
        #在第一次构造网络时需要创建新的变量,以后每次调用这个函数都直接使用reuse=True就不需要每次传入变量了
        weights = tf.get_variable("weights", [INPUT_NODE, LAYER1_NODE],
                                  initializer=tf.truncated_normal_initializer(stddev=0.1))
        biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.1))
        # 若没有提供滑动平均类,则直接使用参数当前的取值
        if avg_class == None:
            layer1 = tf.nn.relu(tf.matmul(input_tensor, weights)+biases)
        else:
            layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights)) + avg_class.average(biases))

    #定义第二层神经网络的变量和前向传播过程
    with tf.variable_scope("layer2", reuse=reuse):
        weights = tf.get_variable("weights", [LAYER1_NODE, OUTPUT_NODE],
                                  initializer=tf.truncated_normal_initializer(stddev=0.1))
        biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.1))
        if avg_class == None:
            layer2 = tf.matmul(layer1, weights)+biases
        else:
            layer2 = tf.matmul(layer1, avg_class.average(weights))+avg_class.average(biases)
    #返回最后的前向传播结果
    return layer2


#训练网络的过程
def train(mnist):
    x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')

    #计算在当前参数下神经网络前向传播的结果,这里的用于计算滑动平均的类为None,所以没有使用滑动平均值
    y = inference(x, None)
    #在程序中需要使用训练好的神经网络进行推导时,可直接调用inference(new_x, variable_averages, True)

    #定义存储训练轮数的变量,这个变量不需要被训练
    global_step = tf.Variable(0, trainable=False)

    #初始化滑动平均类
    variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)

    #在所有代表神经网络参数的变量上使用滑动平均,需要被训练的参数,variable_averages返回的就是GraphKeys.TRAINABLE_VARIABLES中的元素
    variable_averages_op = variable_averages.apply(tf.trainable_variables())

    #计算使用了滑动平均之后的前向传播结果,滑动平均不会改变变量本身取值,会用一个影子变量来记录
    average_y = inference(x, variable_averages, True)

    #计算交叉熵,使用了sparse_softmax_cross_entropy_with_logits,当问题只有一个正确答案时,可以使用这个函数来加速交叉熵的计算。
    #这个函数的第一个参数是神经网络不包括softmax层的前向传播结果,第二个是训练数据的正确答案,argmax返回最大值的位置
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    #计算在当前batch中所有样例的交叉熵平均值
    cross_entropy_mean = tf.reduce_mean(cross_entropy)

    #计算L2正则化损失
    regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)

    with tf.variable_scope("", reuse=True):
        weights1 = tf.get_variable("layer1/weights", [INPUT_NODE, LAYER1_NODE])
        weights2 = tf.get_variable("layer2/weights", [LAYER1_NODE, OUTPUT_NODE])

    #计算网络的正则化损失
    regularization = regularizer(weights1) + regularizer(weights2)
    #总损失为交叉熵损失和正则化损失之和
    loss = cross_entropy_mean + regularization
    #设置指数衰减的学习率
    learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step,
                                               mnist.train.num_examples/BATCH_SIZE, LEARNING_RATE_DECAY)
    #LEARNING_RATE_BASE为基础学习率,global_step为当前迭代的次数
    #mnist.train.num_examples/BATCH_SIZE为完整的过完所有的训练数据需要的迭代次数
    #LEARNING_RATE_DECAY为学习率衰减速度

    #使用GradientDescentOptimizer优化算法优化损失函数
    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)

    #在训练神经网络的时候,每过一遍数据都要通过反向传播来更新参数以及其滑动平均值
    # 为了一次完成多个操作,可以通过tf.control_dependencies和tf.group两种机制来实现
    # train_op = tf.group(train_step, variable_averages_op)  #和下面代码功能一样
    with tf.control_dependencies([train_step, variable_averages_op]):
        train_op = tf.no_op(name = 'train')

    #检验使用了滑动平均模型的神经网络前向传播结果是否正确
    #f.argmax(average_y, 1)计算了每一个样例的预测答案,得到的结果是一个长度为batch的一维数组
    #一维数组中的值就表示了每一个样例对应的数字识别结果
    #tf.equal判断两个张量的每一维是否相等。如果相等返回True,反之返回False
    correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
    #首先将一个布尔型的数组转换为实数,然后计算平均值
    #平均值就是网络在这一组数据上的正确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    #初始会话并开始训练过程
    with tf.Session() as sess:
        tf.global_variables_initializer().run() #参数初始化
        #准备验证数据,在神经网络的训练过程中,会通过验证数据来大致判断停止的条件和评判训练的效果
        validate_data = {x: mnist.validation.images, y_:mnist.validation.labels}
        #准备测试数据
        test_data = {x:mnist.test.images, y_:mnist.test.labels}
        #迭代的训练神经网络
        for i in range(TRAINING_STEPS):
            #每1000轮输出一次在验证数据集上的测试结果
            if i%1000==0:
                #计算滑动平均模型在验证数据上的结果,因为MNIST数据集较小,所以可以一次处理所有的验证数据
                validate_acc = sess.run(accuracy, feed_dict=validate_data)
                print("After %d training steps, validation accuracy using average model is %g"
                      %(i, validate_acc))

            # 产生训练数据batch,开始训练
            xs, ys = mnist.train.next_batch(BATCH_SIZE)  # xs为数据,ys为标签
            sess.run(train_op, feed_dict={x:xs, y_:ys})

        test_acc = sess.run(accuracy, feed_dict=test_data)
        print("After %d training steps, validation accuracy using average model is %g"
              %(TRAINING_STEPS, test_acc))

#程序主入口
def main(argv=None):
    # 声明处理MNIST数据集的类,one_hot=True将标签表示为向量形式
    mnist = input_data.read_data_sets("/Users/gaoyue/文档/Program/tensorflow_google/chapter5", one_hot=True)
    train(mnist)

#TensorFlow提供程序主入口,tf.app.run会调用上面定义的main函数
if __name__ =='__main__':
    tf.app.run()
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/gaoyueace/article/details/79079068

智能推荐

hive使用适用场景_大数据入门:Hive应用场景-程序员宅基地

文章浏览阅读5.8k次。在大数据的发展当中,大数据技术生态的组件,也在不断地拓展开来,而其中的Hive组件,作为Hadoop的数据仓库工具,可以实现对Hadoop集群当中的大规模数据进行相应的数据处理。今天我们的大数据入门分享,就主要来讲讲,Hive应用场景。关于Hive,首先需要明确的一点就是,Hive并非数据库,Hive所提供的数据存储、查询和分析功能,本质上来说,并非传统数据库所提供的存储、查询、分析功能。Hive..._hive应用场景

zblog采集-织梦全自动采集插件-织梦免费采集插件_zblog 网页采集插件-程序员宅基地

文章浏览阅读496次。Zblog是由Zblog开发团队开发的一款小巧而强大的基于Asp和PHP平台的开源程序,但是插件市场上的Zblog采集插件,没有一款能打的,要么就是没有SEO文章内容处理,要么就是功能单一。很少有适合SEO站长的Zblog采集。人们都知道Zblog采集接口都是对Zblog采集不熟悉的人做的,很多人采取模拟登陆的方法进行发布文章,也有很多人直接操作数据库发布文章,然而这些都或多或少的产生各种问题,发布速度慢、文章内容未经严格过滤,导致安全性问题、不能发Tag、不能自动创建分类等。但是使用Zblog采._zblog 网页采集插件

Flink学习四:提交Flink运行job_flink定时运行job-程序员宅基地

文章浏览阅读2.4k次,点赞2次,收藏2次。restUI页面提交1.1 添加上传jar包1.2 提交任务job1.3 查看提交的任务2. 命令行提交./flink-1.9.3/bin/flink run -c com.qu.wc.StreamWordCount -p 2 FlinkTutorial-1.0-SNAPSHOT.jar3. 命令行查看正在运行的job./flink-1.9.3/bin/flink list4. 命令行查看所有job./flink-1.9.3/bin/flink list --all._flink定时运行job

STM32-LED闪烁项目总结_嵌入式stm32闪烁led实验总结-程序员宅基地

文章浏览阅读1k次,点赞2次,收藏6次。这个项目是基于STM32的LED闪烁项目,主要目的是让学习者熟悉STM32的基本操作和编程方法。在这个项目中,我们将使用STM32作为控制器,通过对GPIO口的控制实现LED灯的闪烁。这个STM32 LED闪烁的项目是一个非常简单的入门项目,但它可以帮助学习者熟悉STM32的编程方法和GPIO口的使用。在这个项目中,我们通过对GPIO口的控制实现了LED灯的闪烁。LED闪烁是STM32入门课程的基础操作之一,它旨在教学生如何使用STM32开发板控制LED灯的闪烁。_嵌入式stm32闪烁led实验总结

Debezium安装部署和将服务托管到systemctl-程序员宅基地

文章浏览阅读63次。本文介绍了安装和部署Debezium的详细步骤,并演示了如何将Debezium服务托管到systemctl以进行方便的管理。本文将详细介绍如何安装和部署Debezium,并将其服务托管到systemctl。解压缩后,将得到一个名为"debezium"的目录,其中包含Debezium的二进制文件和其他必要的资源。注意替换"ExecStart"中的"/path/to/debezium"为实际的Debezium目录路径。接下来,需要下载Debezium的压缩包,并将其解压到所需的目录。

Android 控制屏幕唤醒常亮或熄灭_android实现拿起手机亮屏-程序员宅基地

文章浏览阅读4.4k次。需求:在诗词曲文项目中,诗词整篇朗读的时候,文章没有读完会因为屏幕熄灭停止朗读。要求:在文章没有朗读完毕之前屏幕常亮,读完以后屏幕常亮关闭;1.权限配置:设置电源管理的权限。

随便推点

目标检测简介-程序员宅基地

文章浏览阅读2.3k次。目标检测简介、评估标准、经典算法_目标检测

记SQL server安装后无法连接127.0.0.1解决方法_sqlserver 127 0 01 无法连接-程序员宅基地

文章浏览阅读6.3k次,点赞4次,收藏9次。实训时需要安装SQL server2008 R所以我上网上找了一个.exe 的安装包链接:https://pan.baidu.com/s/1_FkhB8XJy3Js_rFADhdtmA提取码:ztki注:解压后1.04G安装时Microsoft需下载.NET,更新安装后会自动安装如下:点击第一个傻瓜式安装,唯一注意的是在修改路径的时候如下不可修改:到安装实例的时候就可以修改啦数据..._sqlserver 127 0 01 无法连接

js 获取对象的所有key值,用来遍历_js 遍历对象的key-程序员宅基地

文章浏览阅读7.4k次。1. Object.keys(item); 获取到了key之后就可以遍历的时候直接使用这个进行遍历所有的key跟valuevar infoItem={ name:'xiaowu', age:'18',}//的出来的keys就是[name,age]var keys=Object.keys(infoItem);2. 通常用于以下实力中 <div *ngFor="let item of keys"> <div>{{item}}.._js 遍历对象的key

粒子群算法(PSO)求解路径规划_粒子群算法路径规划-程序员宅基地

文章浏览阅读2.2w次,点赞51次,收藏310次。粒子群算法求解路径规划路径规划问题描述    给定环境信息,如果该环境内有障碍物,寻求起始点到目标点的最短路径, 并且路径不能与障碍物相交,如图 1.1.1 所示。1.2 粒子群算法求解1.2.1 求解思路    粒子群优化算法(PSO),粒子群中的每一个粒子都代表一个问题的可能解, 通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。    在路径规划中,我们将每一条路径规划为一个粒子,每个粒子群群有 n 个粒 子,即有 n 条路径,同时,每个粒子又有 m 个染色体,即中间过渡点的_粒子群算法路径规划

量化评价:稳健的业绩评价指标_rar 海龟-程序员宅基地

文章浏览阅读353次。所谓稳健的评估指标,是指在评估的过程中数据的轻微变化并不会显著的影响一个统计指标。而不稳健的评估指标则相反,在对交易系统进行回测时,参数值的轻微变化会带来不稳健指标的大幅变化。对于不稳健的评估指标,任何对数据有影响的因素都会对测试结果产生过大的影响,这很容易导致数据过拟合。_rar 海龟

IAP在ARM Cortex-M3微控制器实现原理_value line devices connectivity line devices-程序员宅基地

文章浏览阅读607次,点赞2次,收藏7次。–基于STM32F103ZET6的UART通讯实现一、什么是IAP,为什么要IAPIAP即为In Application Programming(在应用中编程),一般情况下,以STM32F10x系列芯片为主控制器的设备在出厂时就已经使用J-Link仿真器将应用代码烧录了,如果在设备使用过程中需要进行应用代码的更换、升级等操作的话,则可能需要将设备返回原厂并拆解出来再使用J-Link重新烧录代码,这就增加了很多不必要的麻烦。站在用户的角度来说,就是能让用户自己来更换设备里边的代码程序而厂家这边只需要提供给_value line devices connectivity line devices