SHAP: 在我眼里,没有黑箱_python对shap的计算只能针对大数值吗-程序员宅基地

技术标签: 零基础入门数据挖掘  SHAP  竞赛学习笔记  特征选择  Feature import  

1. 写在前面

很多高级的机器学习模型(xgboost, lgb, cat)和神经网络模型, 它们相对于普通线性模型在进行预测时往往有更好的精度,但是同时也失去了线性模型的可解释性, 所以这些模型也往往看作是黑箱模型, 在2017年,Lundberg和Lee的论文提出了SHAP值这一广泛适用的方法用来解释各种模型(分类以及回归), 使得前面的黑箱模型变得可解释了,这篇文章主要整理一下SHAP的使用, 这个在特征选择的时候特别好用。

这次整理, 主要是在xgboost和lgb等树模型上的使用方式, 并且用一个真实的数据集进行演示, 详细的内容参考SHAP的原地址:https://github.com/slundberg/shap

2. 简单回忆特征选择

一般在机器学习中, 我们想看哪些特征对目标变量有重要作用的时候, 常用的有下面几种方式:

  1. 求相关性
    这个往往可以判别出某些特征和目标变量之间是否有线性相关关系, 从而去看某些特征的重要性程度, 一般我们喜欢保留线性相关关系大的一些特征。

  2. 包裹式
    这个说白了, 就是直接把数据放到像xgboost和lgb这种模型中训练, 训练完了之后, 再用feature importance可视化每个特征的重要性, 从而看哪些特征对最终的模型影响较大, But, 这种方式无法判断特征与最终预测结果的关系是如何的, 即不知道怎么影响的,待会给出真实例子来演示。

  3. permutation importance
    这是在kaggle比赛中学习到的一种特征筛选的方式, 所以也借机整理一下, 这个方式还是很不错的, 这个思路就是用所有的特征训练模型, 然后再在验证集上得到验证误差, 然后遍历每一个特征, 随机打乱这个特征的值, 再计算验证误差, 用后面的验证误差和前面的验证误差进行对比, 就可以看出该特征对于减少误差的贡献程度, 也就能看出特征的重要性。这里整理一下这种方式(思路):

    # 首先我们先建立一个模型, 然后写一个训练模型的函数
    lgb_params = {
          
         'boosting_type': 'gbdt',         # Standart boosting type
        'objective': 'mae',       # Standart loss for RMSE
        'metric': ['mae'],              # as we will use rmse as metric "proxy"
        'subsample': 0.8,                
        'subsample_freq': 1,
        'learning_rate': 0.05,           # 0.5 is "fast enough" for us
        'num_leaves': 2**7-1,            # We will need model only for fast check
        'min_data_in_leaf': 2**8-1,      # So we want it to train faster even with drop in generalization 
        'feature_fraction': 0.8,
        'n_estimators': 5000,            # We don't want to limit training (you can change 5000 to any big enough number)
        'early_stopping_rounds': 30,     # We will stop training almost immediately (if it stops improving) 
        'seed': 2020,
        'verbose': -1,
    }
    
    def make_fast_test(sel_data):
        train_ready = sel_data[sel_data['time'] < pd.to_datetime('2019-12-10')].drop(columns = ['time'])
    
        x_train = train_ready.drop(columns = ['TTI'])
        y_train = train_ready['TTI']
    
        val_ready = sel_data[sel_data['time'] >= pd.to_datetime('2019-12-10')].drop(columns = ['time'])
        x_val = val_ready.drop(columns = ['TTI'])
        y_val = val_ready['TTI']
    
        train_data = lgb.Dataset(x_train, label=y_train)
        val_data = lgb.Dataset(x_val, label=y_val)
        
        estimator = lgb.train(lgb_params, train_data, valid_sets=[train_data, val_data], verbose_eval=500)
        return estimator
    
    # 调用函数建立训练好的模型
    test_model = make_fast_test(sel_data)
    
    # 做一个验证集
    features_columns = sel_data.drop(columns='time').columns.tolist()
    features_columns.remove('TTI')
    
    val_ready = val_ready = sel_data[sel_data['time'] >= pd.to_datetime('2019-12-10')].drop(columns = ['time'])
    x_val = val_ready.drop(columns = ['TTI'])
    y_val = val_ready['TTI']
    
    pre = test_model.predict(x_val)
    base_score = mean_absolute_error(pre, y_val)
    print('startscore: ', base_score)       # 这里会得到模型在验证集上的分数
    
    # 接下来就是尝试筛选特征,对于每个特征, 
    # 把那一列的值进行随机打乱, 然后再用之前的模型进行预测, 得到验证误差
    # 对比这俩误差的不同, 就会发现每个特征对于模型来说,是有利于模型表现好还是表现差
    for col in features_columns:
        temp_df = x_val.copy()
        
        temp_df[col] = np.random.permutation(temp_df[col].values)
        pre = test_model.predict(temp_df)
        cur_score = mean_absolute_error(pre, y_val)
        
        print(col, np.round(cur_score-base_score, 4))
    

    这个方式,其实就能够既判断出特征的重要性, 也能判断出特征是怎么影响模型的。
    而有了SHAP之后, 貌似是这一切变得更加简单。

下面通过一个真实的例子, 来看一下之前的Feature importance和SHAP的具体使用, 这里用的数据集是一个数据竞赛的数据集

3. Feature importance VS SHAP

3.1 Feature importance

在SHAP被广泛使用之前,我们通常用feature importance或者partial dependence plot来解释xgboost等机器学习模型。 feature importance是用来衡量数据集中每个特征的重要性。每个特征对于提升整个模型的预测能力的贡献程度就是特征的重要性。

下面根据这个案例来看看, 先导入包和数据, 然后训练xgb和lgb。

import xgboost as xgb
import lightgbm as lgb
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('seaborn')
# 读取数据
data = pd.read_csv('data/train.csv', index_col=0)
# 获得球员的年龄
today = pd.to_datetime('2018-01-01')
data['birth_date'] = pd.to_datetime(data['birth_date'])
data['age'] = np.round((today-data['birth_date']).apply(lambda x:x.days) / 365., 1)

# 选择部分特征举例
# 特征依次为身高(厘米)、潜力、速度、射门、传球、带球、防守、体格、国际知名度、年龄
cols = ['height_cm', 'potential', 'pac', 'sho', 'pas', 'dri', 'def', 'phy', 
        'international_reputation', 'age']

model1 = xgb.XGBRegressor(max_depth=4, learning_rate=0.05, n_estimators=150)
model2 = lgb.LGBMRegressor()

model1.fit(data[cols], data['y'])
model2.fit(data[cols], data['y'])

下面我们可以画出每个特征的重要性程度:

# 获取feature importance
plt.figure(figsize=(20, 10))
plt.subplot(1, 2, 1)
plt.bar(range(len(cols)), model1.feature_importances_)
plt.xticks(range(len(cols)), cols, rotation=-45, fontsize=14)
plt.title('Xgb Feature importance', fontsize=14)

plt.subplot(1, 2, 2)
plt.bar(range(len(cols)), model2.feature_importances_)
plt.xticks(range(len(cols)), cols, rotation=-45, fontsize=14)
plt.title('Lgb Feature importance', fontsize=14)
plt.show()

结果如下:
在这里插入图片描述
对于xgboost来说,我们可以看出国际知名度、潜力和年龄是影响球员身价最重要的三个因素。而LGB来说, 潜力和年龄很重要, 但是这些因素和身价是正相关、负相关还是其他更复杂的相关性,我们无法从上图得知。我们也无法解读每个特征对每个个体的预测值的影响。

3.2 SHAP value

SHAP的名称来源于SHapley Additive exPlanation。

Shapley value起源于合作博弈论。比如说甲乙丙丁四个工人一起打工,甲和乙完成了价值100元的工件,甲、乙、丙完成了价值120元的工件,乙、丙、丁完成了价值150元的工件,甲、丁完成了价值90元的工件,那么该如何公平、合理地分配这四个人的工钱呢?Shapley提出了一个合理的计算方法(有兴趣地可以查看原论文),我们称每个参与者分配到的数额为Shapley value。

SHAP是由Shapley value启发的可加性解释模型。对于每个预测样本,模型都产生一个预测值,SHAP value就是该样本中每个特征所分配到的数值。假设第 i i i个样本为 x i x_i xi, 第 i i i个样本的第 j j j个特征为 x i j x_{ij} xij, 模型对于第 i i i个样本的预测值为 y i y_i yi, 整个模型的基线(通常是所有样本目标变量的均值)为 y b a s e y_{base} ybase, 那么SHAP value服从以下等式。
y i = y b a s e + f ( x i 1 ) + f ( x i 2 ) + f ( x i 3 ) + . . . . + f ( x i k ) y_i = y_{base}+f(x_{i1})+f(x_{i2})+f(x_{i3})+....+f(x_{ik}) yi=ybase+f(xi1)+f(xi2)+f(xi3)+....+f(xik)
其中, f ( x i k ) f(x_{ik}) f(xik) x i k x_{ik} xik的SHAP值。 直观上看, f ( x i k ) f_(x_{ik}) f(xik)就是第 i i i个样本中第 k k k个特征对最终预测值 y i y_i yi的贡献值, 当 f ( x i k ) > 0 f_(x_{ik})>0 f(xik)>0, 说明该特征提升了预测值, 也是正向的作用, 反之, 说明该特征使得预测值降低, 有反作用。很明显可以看出,与前面的feature importance相比,SHAP value最大的优势是SHAP能对于反映出每一个样本中的特征的影响力,而且还表现出影响的正负性

那么怎么用呢?

3.3 SHAP的python实现

Python中SHAP值的计算由shap这个package实现,可以通过pip install shap安装。

import shap

# 导入package, 就可以用shape获得一个解释器
explainer_xgb = shap.TreeExplainer(model1)
explainer_lgb = shap.TreeExplainer(model2)

# 获取训练集data各个样本各个特征的SHAP值
shape_values = explainer_lgb.shap_values(data[cols])
shape_values.shape    # data中有10441个样本10个特征, 所以这里的SHAP值是每个样本每个特征的shap值

# 获得基线ybase
ybase_xgb = explainer_xgb.expected_value
ybase_lgb = explainer_lgb.expected_value
print(ybase_lgb, ybase_xgb)   # 229.28876544209956 [229.1682549]

## 基线值等于训练集的目标变量的拟合值的均值
pred_xgb = model1.predict(data[cols])
pred_lgb = model2.predict(data[cols])
print(pred_lgb.mean(), pred_xgb.mean())  # 229.28876544209956 229.16826
3.3.1 单个样本的SHAP的值

可以随机检查某一个球员身价的预测值以及各个特征对其预测值的影响。

j = 30
player_explainer = pd.DataFrame()
player_explainer['feature'] = cols
player_explainer['feature_values'] = data[cols].iloc[j].values
player_explainer['shap_value'] = shape_values[j]
player_explainer

结果如下:
在这里插入图片描述

# 一个样本中各个特征SHAP的值的和加上基线值应该等于该样本的预测值
print(ybase_lgb+player_explainer['shap_value'].sum(), pred_lgb[j])

shap还提供了强大的数据可视化功能。

shap.initjs()
shap.force_plot(explainer_lgb.expected_value, shape_values[j], data[cols].iloc[j])

结果如下:
在这里插入图片描述
蓝色表示该特征的贡献是负数, 红色表示该特征的贡献是正数。

3.3.2 对特征的总体分析

除了能对单个样本的SHAP值进行可视化之外,还能对特征进行整体的可视化。

shap.summary_plot(shape_values, data[cols])

结果如下:
在这里插入图片描述

图中每一行代表一个特征,横坐标为SHAP值。一个点代表一个样本,颜色越红说明特征本身数值越大,颜色越蓝说明特征本身数值越小。

我们可以直观地看出潜力potential是一个很重要的特征,而且基本上是与身价成正相关的。年龄age也会明显影响身价,蓝色点主要集中在SHAP小于0的区域,可见年纪小会降低身价估值,另一方面如果年纪很大,也会降低估值,甚至降低得更明显,因为age这一行最左端的点基本上都是红色的。

我们也可以把一个特征对目标变量影响程度的绝对值的均值作为这个特征的重要性。因为SHAP和feature_importance的计算方法不同,所以我们这里也得到了与前面不同的重要性排序。

shap.summary_plot(shape_values, data[cols], plot_type='bar')

结果如下:
在这里插入图片描述

3.3.3 部分依赖图

SHAP也提供了部分依赖图的功能,与传统的部分依赖图不同的是,这里纵坐标不是目标变量y的数值而是SHAP值。

shap.dependence_plot('age', shape_values, data[cols], interaction_index=None, show=False)

结果如下:
在这里插入图片描述

年纪大概呈现出金字塔分布,也就是25到32岁这个年纪对球员的身价是拉抬作用,小于25以及大于32岁的球员身价则会被年纪所累。

3.3.4 对多个变量的交互进行分析

可以多个变量的交互作用进行分析。

shap_interaction_values = shap.TreeExplainer(model1).shap_interaction_values(data[cols])
shap.summary_plot(shap_interaction_values, data[cols], max_display=4)

结果如下:
在这里插入图片描述

3.3.5 两个变量交互下的变量对目标值的影响
shap.dependence_plot('potential', shape_values, data[cols], interaction_index='international_reputation', show=False)

结果如下:
在这里插入图片描述

4. 小总

小总一下, SHAP在特征选择里面挺常用的, 让很多模型变得有了可解释性。当然, 也不仅适用于机器学习模型, 同样也适用于深度学习的一些模型, 这个具体的可以看下面的GitHub链接。

参考

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/wuzhongqiang/article/details/107415606

智能推荐

18个顶级人工智能平台-程序员宅基地

文章浏览阅读1w次,点赞2次,收藏27次。来源:机器人小妹  很多时候企业拥有重复,乏味且困难的工作流程,这些流程往往会减慢生产速度并增加运营成本。为了降低生产成本,企业别无选择,只能自动化某些功能以降低生产成本。  通过数字化..._人工智能平台

electron热加载_electron-reloader-程序员宅基地

文章浏览阅读2.2k次。热加载能够在每次保存修改的代码后自动刷新 electron 应用界面,而不必每次去手动操作重新运行,这极大的提升了开发效率。安装 electron 热加载插件热加载虽然很方便,但是不是每个 electron 项目必须的,所以想要舒服的开发 electron 就只能给 electron 项目单独的安装热加载插件[electron-reloader]:// 在项目的根目录下安装 electron-reloader,国内建议使用 cnpm 代替 npmnpm install electron-relo._electron-reloader

android 11.0 去掉recovery模式UI页面的选项_android recovery 删除 部分菜单-程序员宅基地

文章浏览阅读942次。在11.0 进行定制化开发,会根据需要去掉recovery模式的一些选项 就是在device.cpp去掉一些选项就可以了。_android recovery 删除 部分菜单

mnn linux编译_mnn 编译linux-程序员宅基地

文章浏览阅读3.7k次。https://www.yuque.com/mnn/cn/cvrt_linux_mac基础依赖这些依赖是无关编译选项的基础编译依赖• cmake(3.10 以上)• protobuf (3.0 以上)• 指protobuf库以及protobuf编译器。版本号使用 protoc --version 打印出来。• 在某些Linux发行版上这两个包是分开发布的,需要手动安装• Ubuntu需要分别安装 libprotobuf-dev 以及 protobuf-compiler 两个包•..._mnn 编译linux

利用CSS3制作淡入淡出动画效果_css3入场效果淡入淡出-程序员宅基地

文章浏览阅读1.8k次。CSS3新增动画属性“@-webkit-keyframes”,从字面就可以看出其含义——关键帧,这与Flash中的含义一致。利用CSS3制作动画效果其原理与Flash一样,我们需要定义关键帧处的状态效果,由CSS3来驱动产生动画效果。下面讲解一下如何利用CSS3制作淡入淡出的动画效果。具体实例可参考刚进入本站时的淡入效果。1. 定义动画,名称为fadeIn@-webkit-keyf_css3入场效果淡入淡出

计算机软件又必须包括什么,计算机系统应包括硬件和软件两个子系统,硬件和软件又必须依次分别包括______?...-程序员宅基地

文章浏览阅读2.8k次。计算机系统应包括硬件和软件两个子系统,硬件和软件又必须依次分别包括中央处理器和系统软件。按人的要求接收和存储信息,自动进行数据处理和计算,并输出结果信息的机器系统。计算机是脑力的延伸和扩充,是近代科学的重大成就之一。计算机系统由硬件(子)系统和软件(子)系统组成。前者是借助电、磁、光、机械等原理构成的各种物理部件的有机组合,是系统赖以工作的实体。后者是各种程序和文件,用于指挥全系统按指定的要求进行..._计算机系统包括硬件系统和软件系统 软件又必须包括

随便推点

进程调度(一)——FIFO算法_进程调度fifo算法代码-程序员宅基地

文章浏览阅读7.9k次,点赞3次,收藏22次。一 定义这是最早出现的置换算法。该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。该算法实现简单,只需把一个进程已调入内存的页面,按先后次序链接成一个队列,并设置一个指针,称为替换指针,使它总是指向最老的页面。但该算法与进程实际运行的规律不相适应,因为在进程中,有些页面经常被访问,比如,含有全局变量、常用函数、例程等的页面,FIFO 算法并不能保证这些页面不被淘汰。这里,我_进程调度fifo算法代码

mysql rownum写法_mysql应用之类似oracle rownum写法-程序员宅基地

文章浏览阅读133次。rownum是oracle才有的写法,rownum在oracle中可以用于取第一条数据,或者批量写数据时限定批量写的数量等mysql取第一条数据写法SELECT * FROM t order by id LIMIT 1;oracle取第一条数据写法SELECT * FROM t where rownum =1 order by id;ok,上面是mysql和oracle取第一条数据的写法对比,不过..._mysql 替换@rownum的写法

eclipse安装教程_ecjelm-程序员宅基地

文章浏览阅读790次,点赞3次,收藏4次。官网下载下载链接:http://www.eclipse.org/downloads/点击Download下载完成后双击运行我选择第2个,看自己需要(我选择企业级应用,如果只是单纯学习java选第一个就行)进入下一步后选择jre和安装路径修改jvm/jre的时候也可以选择本地的(点后面的文件夹进去),但是我们没有11版本的,所以还是用他的吧选择接受安装中安装过程中如果有其他界面弹出就点accept就行..._ecjelm

Linux常用网络命令_ifconfig 删除vlan-程序员宅基地

文章浏览阅读245次。原文链接:https://linux.cn/article-7801-1.htmlifconfigping &lt;IP地址&gt;:发送ICMP echo消息到某个主机traceroute &lt;IP地址&gt;:用于跟踪IP包的路由路由:netstat -r: 打印路由表route add :添加静态路由路径routed:控制动态路由的BSD守护程序。运行RIP路由协议gat..._ifconfig 删除vlan

redux_redux redis-程序员宅基地

文章浏览阅读224次。reduxredux里要求把数据都放在公共的存储区域叫store里面,组件中尽量少放数据,假如绿色的组件要给很多灰色的组件传值,绿色的组件只需要改变store里面对应的数据就行了,接着灰色的组件会自动感知到store里的数据发生了改变,store只要有变化,灰色的组件就会自动从store里重新取数据,这样绿色组件的数据就很方便的传到其它灰色组件里了。redux就是把公用的数据放在公共的区域去存..._redux redis

linux 解压zip大文件(解决乱码问题)_linux 7za解压中文乱码-程序员宅基地

文章浏览阅读2.2k次,点赞3次,收藏6次。unzip版本不支持4G以上的压缩包所以要使用p7zip:Linux一个高压缩率软件wget http://sourceforge.net/projects/p7zip/files/p7zip/9.20.1/p7zip_9.20.1_src_all.tar.bz2tar jxvf p7zip_9.20.1_src_all.tar.bz2cd p7zip_9.20.1make && make install 如果安装失败,看一下报错是不是因为没有下载gcc 和 gcc ++(p7_linux 7za解压中文乱码

推荐文章

热门文章

相关标签